Source code for hybra.hybridfilterbank

import torch
import torch.nn as nn
import torch.nn.functional as F
from hybra.utils import condition_number, audfilters, plot_response, circ_conv, circ_conv_transpose, frame_bounds
from hybra.utils import ISACgram as ISACgram_
from hybra._fit_dual import tight_hybra
from typing import Union

[docs] class HybrA(nn.Module): """Hybrid Auditory filterbank combining fixed and learnable components. HybrA (Hybrid Auditory) filterbanks extend ISAC by combining fixed auditory-inspired filters with learnable filters through channel-wise convolution. This hybrid approach enables data-driven adaptation while maintaining perceptual auditory characteristics and frame-theoretic stability guarantees. Args: kernel_size (int): Kernel size of the auditory filterbank. Default: 128 learned_kernel_size (int): Kernel size of the learned filterbank. Default: 23 num_channels (int): Number of frequency channels. Default: 40 stride (int, optional): Stride of the auditory filterbank. If None, uses 25% overlap. Default: None fc_max (float, optional): Maximum frequency on the auditory scale in Hz. If None, uses fs//2. Default: None fs (int): Sampling frequency in Hz. Default: None (required) L (int): Signal length in samples. Default: None (required) supp_mult (float): Support multiplier for kernel sizing. Default: 1.0 scale (str): Auditory scale type. One of {'mel', 'erb', 'bark', 'log10', 'elelog'}. 'elelog' is adapted for elephant hearing. Default: 'mel' tighten (bool): Whether to apply tightening to improve frame bounds. Default: False det_init (bool): Whether to initialize learned filters as diracs (True) or randomly (False). Default: False verbose (bool): Whether to print filterbank information during initialization. Default: True Note: The hybrid construction h_m = g_m ⊛ ℓ_m combines ISAC auditory filters (g_m) with compact learnable filters (ℓ_m) through convolution. This maintains the perceptual benefits of auditory scales while enabling data-driven optimization and preserving perfect reconstruction properties. Example: >>> filterbank = HybrA(kernel_size=128, num_channels=40, fs=16000, L=16000) >>> x = torch.randn(1, 16000) >>> coeffs = filterbank(x) >>> reconstructed = filterbank.decoder(coeffs) """
[docs] def __init__(self, kernel_size:int=128, learned_kernel_size:int=23, num_channels:int=40, stride:Union[int,None]=None, fc_max:Union[float,int,None]=None, fs:int=None, L:int=None, supp_mult:float=1, scale:str='mel', tighten:bool=False, det_init:bool=False, verbose:bool=True): super().__init__() [aud_kernels, d, fc, _, fc_max, kernel_min, kernel_size, Ls] = audfilters( kernel_size=kernel_size, num_channels=num_channels, fc_max=fc_max, fs=fs, L=L, supp_mult=supp_mult, scale=scale ) if stride is not None: d = stride Ls = int(torch.ceil(torch.tensor(Ls / d)) * d) if verbose: print(f"Max. kernel size: {kernel_size}") print(f"Min. kernel size: {kernel_min}") print(f"Number of channels: {num_channels}") print(f"Stride for min. 25% overlap: {d}") print(f"Signal length: {Ls}") self.register_buffer('kernels', aud_kernels) self.kernel_size = kernel_size self.learned_kernel_size = learned_kernel_size self.stride = d self.num_channels = num_channels self.fc = fc self.Ls = Ls self.fs = fs if det_init: learned_kernels = torch.zeros([self.num_channels, 1, self.learned_kernel_size]) learned_kernels[:,0,0] = 1.0 else: learned_kernels = torch.randn([self.num_channels, 1, self.learned_kernel_size])/torch.sqrt(torch.tensor(self.learned_kernel_size*self.num_channels)) learned_kernels = learned_kernels / torch.norm(learned_kernels, p=1, dim=-1, keepdim=True) learned_kernels = learned_kernels.to(self.kernels.dtype) if tighten: learned_kernels = tight_hybra(self.kernels, learned_kernels, d, Ls, fs, fit_eps = 1.0001, max_iter = 1000) self.learned_kernels = nn.Parameter(learned_kernels, requires_grad=True) self.hybra_kernels = F.conv1d( self.kernels.squeeze(1), self.learned_kernels, groups=self.num_channels, padding="same", )
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through the HybrA filterbank. Args: x (torch.Tensor): Input signal of shape (batch_size, signal_length) or (signal_length,) Returns: torch.Tensor: Filterbank coefficients of shape (batch_size, num_channels, num_frames) """ hybra_kernels = F.conv1d( self.kernels.squeeze(1), self.learned_kernels, groups=self.num_channels, padding="same", ) self.hybra_kernels = hybra_kernels.clone().detach() return circ_conv(x.unsqueeze(1), hybra_kernels, self.stride)
[docs] def encoder(self, x: torch.Tensor) -> torch.Tensor: """Encode signal using fixed hybrid kernels (no gradient computation). Args: x (torch.Tensor): Input signal of shape (batch_size, signal_length) or (signal_length,) Returns: torch.Tensor: Filterbank coefficients of shape (batch_size, num_channels, num_frames) Note: Use forward() method during training to enable gradient computation. This method uses pre-computed kernels for inference. """ return circ_conv(x.unsqueeze(1), self.hybra_kernels, self.stride)
[docs] def decoder(self, x: torch.Tensor) -> torch.Tensor: """Reconstruct signal from filterbank coefficients. Args: x (torch.Tensor): Filterbank coefficients of shape (batch_size, num_channels, num_frames) Returns: torch.Tensor: Reconstructed signal of shape (batch_size, signal_length) Note: Uses frame bounds normalization for approximate perfect reconstruction. """ _, B = frame_bounds(self.hybra_kernels.squeeze(1), self.stride, None) return circ_conv_transpose(x, self.hybra_kernels / B, self.stride).squeeze(1)
# plotting methods
[docs] def ISACgram(self, x: torch.Tensor, fmax: Union[float, None] = None) -> None: """Plot time-frequency representation of the signal. Args: x (torch.Tensor): Input signal to visualize fmax (float, optional): Maximum frequency to display in Hz. Default: None Note: This method displays a plot and does not return values. """ with torch.no_grad(): coefficients = self.forward(x).abs() ISACgram_(c=coefficients, fc=self.fc, L=self.Ls, fs=self.fs, fmax=fmax)
[docs] def plot_response(self) -> None: """Plot frequency response of the analysis filters. Note: This method displays a plot and does not return values. """ plot_response((self.hybra_kernels).squeeze().cpu().detach().numpy(), self.fs)
[docs] def plot_decoder_response(self) -> None: """Plot frequency response of the synthesis (decoder) filters. Note: This method displays a plot and does not return values. """ plot_response((self.hybra_kernels).squeeze().cpu().detach().numpy(), self.fs, decoder=True)
@property def condition_number(self, learnable: bool = False) -> Union[torch.Tensor, float]: """Compute condition number of the filterbank. Args: learnable (bool): If True, returns tensor for gradient computation. If False, returns scalar value. Default: False Returns: Union[torch.Tensor, float]: Condition number of the frame operator Note: Lower condition numbers indicate better numerical stability. Values close to 1.0 indicate tight frames. """ kernels = (self.hybra_kernels).squeeze() if learnable: return condition_number(kernels, self.stride, self.Ls) else: return condition_number(kernels, self.stride, self.Ls).item()