Source code for hybra.isac

from typing import Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from hybra.utils import audfilters, condition_number, circ_conv, circ_conv_transpose, frame_bounds
from hybra.utils import plot_response as plot_response_
from hybra.utils import ISACgram as ISACgram_
from hybra._fit_dual import fit, tight

[docs] class ISAC(nn.Module): """Constructor for an ISAC filterbank. Args: kernel_size (int) - size of the kernels of the auditory filterbank num_channels (int) - number of channels fc_max (float) - maximum frequency on the auditory scale. if 'None', it is set to fs//2. stride (int) - stride of the auditory filterbank. if 'None', stride is set to yield 25% overlap fs (int) - sampling frequency L (int) - signal length supp_mult (float) - support multiplier. scale (str) - auditory scale ('mel', 'erb', 'bark', 'log10', 'elelog'). elelog is a scale adapted to the hearing of elephants tighten (bool) - whether to further tighten the filterbank is_encoder_learnable (bool) - whether the encoder kernels are learnable fir_decoder (bool) - computes an approximate perfect reconstruction decoder is_decoder_learnable (bool) - whether the decoder kernels are learnable verbose (bool) - whether to print information about the filterbank """
[docs] def __init__(self, kernel_size:Union[int,None]=128, num_channels:int=40, fc_max:Union[float,int,None]=None, stride:Union[int,None]=None, fs:int=16000, L:int=16000, supp_mult:float=1, scale:str='mel', tighten=False, is_encoder_learnable=False, fit_decoder=False, is_decoder_learnable=False, verbose:bool=True): super().__init__() [aud_kernels, d, fc, fc_min, fc_max, kernel_min, kernel_size, Ls] = audfilters( kernel_size=kernel_size, num_channels=num_channels, fc_max=fc_max, fs=fs, L=L, supp_mult=supp_mult, scale=scale ) if stride is not None: d = stride Ls = int(torch.ceil(torch.tensor(L / d)) * d) if verbose: print(f"Max. kernel size: {kernel_size}") print(f"Min. kernel size: {kernel_min}") print(f"Number of channels: {num_channels}") print(f"Stride for min. 25% overlap: {d}") print(f"Signal length: {Ls}") self.aud_kernels = aud_kernels self.kernel_size = kernel_size self.kernel_min = kernel_min self.fc = fc self.fc_min = fc_min self.fc_max = fc_max self.stride = d self.Ls = Ls self.fs = fs self.scale = scale self.fit_decoder = fit_decoder # optional preprocessing if tighten: aud_kernels = tight(aud_kernels, d, Ls, fs, fit_eps = 1.0001, max_iter = 1000) if fit_decoder: decoder_kernels = fit(aud_kernels.clone(), d, Ls, fs, decoder_fit_eps = 0.0001, max_iter = 10000) else: decoder_kernels = aud_kernels.clone() # set the parameters for the convolutional layers if is_encoder_learnable: self.register_buffer('kernels', nn.Parameter(aud_kernels, requires_grad=True)) else: self.register_buffer('kernels', aud_kernels) if is_decoder_learnable: self.register_buffer('decoder_kernels', nn.Parameter(decoder_kernels, requires_grad=True)) else: self.register_buffer('decoder_kernels', decoder_kernels)
[docs] def forward(self, x): return circ_conv(x.unsqueeze(1), self.kernels, self.stride)
[docs] def decoder(self, x:torch.Tensor) -> torch.Tensor: _, B = frame_bounds(self.decoder_kernels, self.stride, self.Ls) return circ_conv_transpose(x, self.decoder_kernels / B, self.stride).squeeze(1)
# plotting methods
[docs] def ISACgram(self, x): with torch.no_grad(): coefficients = self.forward(x) ISACgram_(coefficients, self.fc, self.Ls, self.fs)
[docs] def plot_response(self): plot_response_(g=(self.kernels).cpu().detach().numpy(), fs=self.fs, scale=self.scale, plot_scale=True, fc_min=self.fc_min, fc_max=self.fc_max, kernel_min=self.kernel_min)
[docs] def plot_decoder_response(self): plot_response_(g=(self.decoder_kernels).detach().cpu().numpy(), fs=self.fs, scale=self.scale, decoder=True)
@property def condition_number(self): kernels = (self.kernels).squeeze() return condition_number(kernels, int(self.stride), self.Ls) @property def condition_number_decoder(self): kernels = (self.decoder_kernels).squeeze() return condition_number(kernels, int(self.stride), self.Ls)