
Residual Hybrid Filterbanks
Vincent Lostanlen1, Xiran Zhang1, Daniel Haider2, Mathieu Lagrange1, Martin Ehler3, Peter Balazs2
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Abstract—A hybrid filterbanks is a convolutional neural network
(convnet) whose learnable filters operate over the subbands of a
non-learnable filterbank, which is designed from domain knowledge.
While hybrid filterbanks have found successful applications in speech
enhancement, our paper shows that they remain susceptible to large
deviations of the energy response due to randomness of convnet weights
at initialization. Against this issue, we propose a variant of hybrid
filterbanks, by inspiration from residual neural networks (ResNets). The
key idea is to introduce a shortcut connection at the output of each
non-learnable filter, bypassing the convnet. We prove that the shortcut
connection in a residual hybrid filterbank lowers the relative standard
deviation of the energy response while the pairwise cosine distances
between non-learnable filters contributes to preventing duplicate features.

Index Terms—audio and speech processing, convolutional neural
networks, filterbank analysis, hybrid deep learning, random matrix
theory.

I. INTRODUCTION

Hybrid deep learning [1], also known as model-based deep learning
[2], has a key role to play in speech and music technology. By
integrating domain knowledge within deep neural networks, hybrid
systems can enhance explainability, controllability and resource
efficiency [3]. In this context, hybrid auditory filterbanks have recently
been proposed for speech enhancement [4]. Formally:

Definition I.1. A hybrid filterbank composes non-learnable filters
ψ1 . . .ψJ ∈ CN with learnable filters w1 . . .wJ ∈ RT , T ≤ N. Its
response to x ∈ RN is a double convolution: (w j ∗ψ j ∗x).

While the ψ j’s are designed by expert knowledge and kept fixed,
the w j’s are typically initialized at random and then iteratively
updated by gradient descent. Yet, convnets for raw audio are known
to be susceptible to numerical instabilities, particularly for T > 2J

and for x having strong correlations at lags up to T [5].
In this article, we present theoretical results for a specific setting

of hybrid filterbanks, where we reduce numerical instabilities while
retaining their capability for gradient-based optimization. Our problem
is that the non-learned filter ψ j may introduce long-range correlations
into (ψ j ∗x), causing random fluctuations of the output energy ∥w j ∗
ψ j ∗x∥2

2. Of course, these random fluctuations could be canceled
by initializing the w j’s with zeros; but such a design choice would
cause the hybrid layer to predict a constant, which is detrimental to
gradient-based optimization [6, Chapter 8.4]. Formally:

Definition I.2. A residual hybrid filterbank (RHF) is a hybrid
filterbank in which the filters w1 . . .wJ are initialized as i.i.d. random
Gaussian filters: w j ∼ N (µδ,σ2I) of length T where δ is the
Kronecker symbol, i.e., δ[t] = 1 if t = 0 and zero otherwise.
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Fig. 1. Random samples of residual hybrid filters (w ∗ψ) where w ∼
N (µδ,σ2I): see Definition I.2. Columns correspond to different designs
of ψ while rows correspond to different values of the residual connection
parameter µ . Each x-axis tick denotes 512 time samples. Note the change in
y-axis scaling across rows. N = 2048, T = 1024.

The term “residual” is chosen in reference to residual networks
(ResNets) [7]. Indeed, the nonzero expected value of w j may be
interpreted as an identity mapping which is weighted by the parameter
µ : (µδ+w)∗ψ = (µψ+w ∗ψ). However, an important difference
is that ResNet blocks typically contain one or several nonlinearities
before the identity mapping, whereas the response of an RHF is
linear with respect to the input signal x.

Figure 1 illustrates the effect of the residual connection onto
random samples of a hybrid filter (w ∗ψ), for ψ being a Dirac
impulse (left); a low-pass filter (center); and a band-pass filter (right).
We observe that larger values of µ improve the temporal localization
of (w ∗ψ) and reduce the relative effect of random initialization.

Section II gives exact formulae for the expected value and
variance of ∥w j ∗ψ j∥2

2, and derives bounds for its relative standard
deviation. Section III gives exact formulae for the expected area
of the parallelogram with sides (w j ∗ψ j) and (w j′ ∗ψ j′) so as to
measure feature diversity. Section IV supports our main findings with
a numerical simulation. We conclude the article in Section V and
defer the proofs to an appendix (Section VI).



II. MOMENTS OF THE ENERGY RESPONSE

Definition II.1. The circular cross-correlation between y and y′ is

R(y,y′)[τ] =
N−1

∑
n=0

y[n]y′[n+ τ] =
N−1

∑
n=0

y[n− τ]y′[n], (1)

where y,y′ ∈CN , the variable τ is an integer lag, the overline denotes
complex conjugation, and indexing is understood modulo N. The
circular autocorrelation of y is Ry= R(y,y).

Proposition II.2. Given y ∈ CN and w ∼ N (µδ,σ2I) of length T :

E
[
∥w ∗y∥2

2
]
=
(
µ

2 +σ
2T
)
∥y∥2. (2)

Proposition II.3. Given y ∈ CN and w ∼ N (µδ,σ2I) of length T :

V
[
∥w ∗y∥2

2
]
= 4µ

2
σ

2
T−1

∑
τ=0

|Ry [τ]|2

+2σ
4

T

∑
τ=−T

(T −|τ|)|Ry [τ]|2. (3)

Note. The proposition above generalizes [5, Proposition II. 1] to
complex values of y and to nonzero values of µ .

Theorem II.4. Given a residual hybrid filterbank with w1 . . .wJ ∼
N (µδ,σ2I) i.i.d. and nonzero ψ1 . . .ψJ , for all j:

2
T

(
1− µ4

(µ2 +σ2T )2

)
≤ V

[
∥w j ∗ψ j∥2

2
]

E
[
∥w j ∗ψ j∥2

2
]2 ≤ 2

(
1− µ4

(µ2 +σ2T )2

)
.

(4)

Furthermore, the lower bound is reached if and only if there exist
n0 ∈ ZN and c ̸= 0 such that ψ[n0] = c and ψ[n] = 0 for all n ̸= n0.

III. EXPECTED BIVECTOR MAGNITUDES

Definition III.1. Given y,y′ ∈ CN , their bivector magnitude is

|y∧y′|=
√

∥y∥2
2∥y′∥2

2 −|⟨y|y′⟩|2, (5)

i.e., the square root of the determinant of the Gram matrix associated
to the indexed family (y,y′).

Note. Geometrically, |y ∧y′| is the area under the parallelogram
with sides y and y′. After normalization by E[∥y∥2]E[∥y′∥2], it can
be interpreted as a quantitative measure of feature diversity.

Proposition III.2. Given y,y′ ∈CN and w,w′ ∼N (µδ,σ2I) i.i.d.:

E
[
⟨w ∗y|w′ ∗y′⟩

]
= µ

2⟨y|y′⟩ (6)

where the bracket notation is the Hermitian inner product over CN .

Proposition III.3. Given y,y′ ∈CN and w,w′ ∼N (µδ,σ2I) i.i.d.:

V
[
⟨w ∗y|w′ ∗y′⟩

]
= 2µ

2
σ

2
T−1

∑
τ=0

|R(y′,y)[τ]|2

+σ
4

T

∑
τ=−T

(
T −|τ|

)
|R(y′,y)[τ]|2 (7)

Proposition III.4. Given a residual hybrid filterbank with
w1 . . .wJ ∼ N (µδ,σ2I) i.i.d. and ψ1 . . .ψJ , for all j ̸= j′:

E
[
|(w j ∗ψ j)∧ (w j′ ∗ψ j′)|2

]
= µ

4
(
∥ψ j∥2

2∥ψ j′∥2
2 −|⟨ψ j|ψ j′⟩|2

)
+2µ

2
σ

2
T−1

∑
τ=0

(
∥ψ j∥2

2∥ψ j′∥2
2 −|R(ψ j′ ,ψ j)[τ]|2

)
+σ

4
∑

|τ|<T

(
T −|τ|

)(
∥ψ j∥2

2∥ψ j′∥2
2 −|R(ψ j′ ,ψ j)[τ]|2

)
(8)
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Fig. 2. Statistics of residual hybrid filterbanks with J = 2 filters as functions
of the parameter µ . Blue, lower curves: ψ1 and ψ2 are Dirac impulses, as
in a plain “Conv1D” layer. Orange, upper curves: ψ1 and ψ2 are orthogonal
low-pass and band-pass filters. Left: relative standard deviation of energy
(lower is better): see Theorem II.4. Right: average cosine distance between
the filters (higher is better): see Theorem III.5. N = 32, T = 16, 100 i.i.d.
trials.

Theorem III.5. Given a residual hybrid filterbank with w1 . . .wJ ∼
N (µδ,σ2I) i.i.d. and nonzero ψ1 . . .ψJ , for all j ̸= j′:

lim
µ/σ→+∞

E
[
|(w j ∗ψ j)∧ (w j′ ∗ψ j′)|2

]
E
[
∥w j ∗ψ j∥2

2∥w j′ ∗ψ j′∥2
2
] = 1− |⟨ψ j|ψ j′⟩|2

∥ψ j∥2
2∥ψ j′∥2

2
. (9)

Note. The right-hand side in the equation above is the cosine distance
between vectors ψ j and ψ j′ . This distance is minimal if and only if
ψ j =ψ j′ and maximal if and only if ψ j and ψ j′ are orthogonal.

IV. NUMERICAL SIMULATION

For simplicity, we consider a residual hybrid filterbank with only
J = 2 filters: ψ1 is a low-pass filter and ψ2 is a band-pass filter, as
seen in the center and right columns of Figure 1. As a baseline, we
also construct a plain convolutional layer or “Conv1D” for short.
The Conv1D layer is obtained by setting ψ1 = ψ2 = δ. For both
filterbanks, we measure this relative standard deviation by estimating
the expected value and variance of energy over 100 i.i.d. trials.

In Figure 2 (left), we observe that, in a non-residual setting, making
the non-learned filters ψ j’s autocorrelated (i.e., non-Dirac) increases
the typical random fluctuations of energy. This is in accordance with
Theorem II.4, which states that, for µ = 0, Conv1D is optimal in
terms of residual standard deviation of energy. However, we may
compensate for it via residual connections (see Theorem II.4): with
our filterbank design, setting µ = 2.5 leads to a relative standard
deviation that is on par with Conv1D with µ = 0. Crucially, this shift
in expected value does not come at the cost of feature diversity: as
seen in Figure 2 (right), on average over 100 i.i.d. trials, the cosine
distance between (w1 ∗ψ1) and (w2 ∗ψ2) goes up with µ for our
low-pass/band-pass pair, even so it goes down with µ for Conv1D.
This is in accordance with Theorem III.5.

V. CONCLUSION

We have presented a simple solution against excessive random
fluctuations of energy in hybrid filterbanks. On the theoretical side,
it remains to be seen how our characterization of feature diversity
scales beyond J = 2 filters: the distribution of the condition number
of residual hybrid filters with random Gaussian weights remain an
open question [8]. On the practical side, residual connections could
be paired with dilated convolutions with w j’s, as in multiresolution
neural networks (MuReNN) [9].



VI. LEMMATA AND PROOFS

Lemma VI.1. Given y,y′ ∈ CN and w,w′ ∈ RT :〈
w ∗y

∣∣w′ ∗y′
〉
=wT ·QT (y,y

′) ·w′ (10)

where QT (y,y
′)[t, t ′] = R(y′,y)[t

′− t] for every 0 ≤ t, t ′ < T .

Note. In the circular cross-correlation (Definition II.1), we conjugate
the first argument to enable its interpretation as inverse Fourier
transform of cross-power spectral density. However, in the Hermitian
dot product, we conjugate the second term so as to follow the
convention of sesquilinear forms. Such a mismatch explains why
Lemma VI.1 permutes indices j and j′ when defining QT .

Proof. We write the circular convolution (w∗y) as the matrix–vector
product CT (y) ·w where

CT (y) =


y[0] y[N −1] · · · y[N −T +1]
y[1] y[0] · · · y[N −T +2]

...
...

...
y[N −2] y[N −3] · · · y[N −T −1]
y[N −1] y[N −2] · · · y[N −T ]


has entries CT (y)[n, t] = y[n − t] for 0 ≤ n < N and 0 ≤ t < T .
Likewise: (w′ ∗x′) = CT (y

′) ·w′. Hence the bilinear form:〈
w ∗y

∣∣w′ ∗y′
〉
= (w′ ∗y′)H · (w ∗y)
= (CT (y

′) ·w′)H · (CT (y) ·w)

= (w′)T ·
(
CT (y

′)H ·CT (y)
)
·w

=wT ·
(
CT (y

′)H ·CT (y)
)T ·w′, (11)

where T (resp. H) denote transpose (resp. conjugate transpose). We
recognize the definition of circular cross-correlation:

(
CT (y

′)H ·CT (y)
)T

[t, t ′] =
N−1

∑
n=0

CT (y′)[t ′,n]CT (y)[n, t]

=
N−1

∑
n=0

y′[n− t ′]y[n− t]

=
N−1

∑
m=0

y′[m− (t ′− t)]y[m]

= R(y′,y)[t
′− t]. (12)

Defining the above as QT (y,y
′)[t, t ′] concludes the proof. ■

Proof of Proposition II.2. By the cyclic property of the trace, Lemma
VI.1 with w =w′ and y = y′ yields

∥w ∗y∥2
2 =w

T ·QT (y,y) ·w
= Tr

(
wT ·QT (y,y) ·w

)
= Tr

(
QT (y,y) ·w ·wT

)
. (13)

Thus, by linearity of the expected value and by definition of QT (y,y):

E
[
∥w ∗y∥2

2
]
=Tr

(
QT (y,y) ·E

[
w j ·wT

j
])

=Tr
(
QT (y,y) · (µ2δδ⊤+σ

2I)
)

=µ
2 Tr
(
δ⊤ ·QT (y,y) ·δ

)
+σ

2 Tr
(
QT (y,y)

)
=(µ2 +σ

2T )R(y,y)[0]. (14)

Replacing R(y,y)[0] by ∥y∥2
2 concludes the proof. ■

Proof of Proposition II.3. By Proposition II.2:

V
[
∥w ∗y∥2

2
]
= E

[(
∥w ∗y∥2

2
)2
]
−E
[
∥w ∗y∥2

2
]2

= E
[
∥w ∗y∥4

2

]
− (µ2 +T σ

2)2∥y∥4
2. (15)

By applying Lemma VI.1 with w′ =w and y′ = y, and by noting
that w is real-valued, the term ∥w ∗y∥4

2 can be expanded as:

∥w ∗y∥4
2 =

(
∥w ∗y∥2

2

)(
∥w ∗y∥2

2

)
=

(
∑

0≤t,t ′<T
Ry [t ′− t]w[t]w[t ′]

)(
∑

0≤u,u′<T
Ry [u′−u]w[u]w[u′]

)

=

(
∑

0≤t,t ′<T
Ry [t ′− t]w[t]w[t ′]

)(
∑

0≤u,u′<T
Ry [u′−u]w[u]w[u′]

)
= ∑

t,t ′,u,u′
Ry [t ′− t]Ry [u′−u]w[t]w[t ′]w[u]w[u′], (16)

where the indices t, t ′,u,u′ range between zero and (T −1). Hence:

E
[
∥w ∗y∥4

2

]
= ∑

t,t ′,u,u′
Ry [t ′− t]Ry [u′−u]E

[
w[t]w[t ′]w[u]w[u′]

]
(17)

We distinguish 12 cases in the sum above:
(i) if t = t ′ = u = u′ = 0, E

[
w[t]4

]
is the kurtosis of w[0]; i.e.,

µ4 +6µ2σ2 +3σ4. This term is weighted by |Ry [0]|2.
(ii) if t = t ′ = u = u′ ̸= 0, E

[
w[t]4

]
is the kurtosis of w[t]; i.e., 3σ4.

There are (T −1) such terms, weighted by |Ry [0]|2.
(iii) if 0 = t = t ′ ̸= u = u′, E

[
w[t]2

]
= µ2 +σ2 and E

[
w[u]2

]
= σ2.

There are (T −1) such terms, weighted by |Ry [0]|2.
(iv) if 0 = u = u′ ̸= t = t ′, we refer back to (iii).
(v) if 0 ̸= u = u′ ̸= t = t ′ ̸= 0, E

[
w[t]2

]
= E

[
w[u]2

]
= σ2. There

are (T −1)(T −2) such terms, weighted by |Ry [0]|2.
(vi) if 0 = t = u ̸= t ′ = u′, E

[
w[t]2

]
= µ2 +σ2 and E

[
w[t ′]2

]
= σ2.

These terms are weighted by |Ry [t ′]|2 for 0 ≤ t ′ < T .
(vii) if 0 = t ′ = u′ ̸= t = u, E

[
w[t]2

]
= σ2 and E

[
w[t ′]2

]
= µ2 +σ2.

These terms are weighted by |Ry [−t]|2 for 0 < t < T .
(viii) if 0 = t = u′ ̸= t ′ = u, we refer back to (vi).

(ix) if 0 = t ′ = u ̸= t = u′, we refer back to (vii).
(x) if 0 ̸= t = u ̸= t ′ = u′ ̸= 0, E

[
w[t]2

]
= E

[
w[u]2

]
= σ2. These

terms are weighted by |Ry [t ′− t]|2 for 0 < t ̸= t ′ < T .
(xi) if 0 ̸= t = u′ ̸= t ′ = u ̸= 0, we refer back to (x).

(xii) otherwise, the term equals zero.
The autocorrelation has Hermitian symmetry: Ry [−τ] = Ry [τ].
Hence: |Ry [−τ]]|2 = |Ry [τ]|2. Equation (17) becomes:

E
[
∥w ∗y∥4

2
]
=(µ4 +6µ

2
σ

2 +3σ
4)|Ry [0]|2 (i)

+3(T −1)σ4|Ry [0]|2 (ii)

+2(T −1)(µ2
σ

2 +σ
4)|Ry [0]|2 (iii) and (iv)

+(T −1)(T −2)σ4|Ry [0]|2 (v)

+4(µ2
σ

2 +σ
4) ∑

0<τ<T
|Ry [τ]|2 (vi) to (ix)

+2σ
4

∑
0<t ̸=t ′<T

|Ry [t ′− t]|2 (x) and (xi)

=αµ
4 +β µ

2
σ

2 + γσ
4 (18)

where α = |Ry [0]|2 = ∥y∥4
2,

β = 6|Ry [0]|2 +2(T −1)|Ry [0]|2 +4 ∑
0<τ<T

|Ry [τ]|2

= 2T∥y∥4
2 +4

T−1

∑
τ=0

|Ry [τ]|2, (19)



γ =
(
(3+3(T −1)+2(T −1)+(T −1)(T −2)

)
|Ry [0]|2

+4 ∑
0<τ<T

|Ry [τ]|2 +2 ∑
0<t ̸=t ′<T

|Ry [t ′− t]|2

= T 2∥y∥4
2 +2

T−1

∑
t=0

T−1

∑
t ′=0

|Ry [t ′− t]|2. (20)

Given an integer τ such that |τ|< T , there are (T −|τ|) pairs (t, t ′)
in the double sum above such that t ′− t = τ . Thus:

γ = T 2
σ

4∥y∥4
2 +2σ

4
T

∑
τ=−T

(
T −|τ|

)
|Ry [τ]|2 (21)

Using Equation (18) and Proposition II.2, we rewrite Equation (15)
as:

V
[
∥w ∗y∥2

2
]
= αµ

4 +β µ
2 + γ − (µ2 +T σ

2)2∥y∥4
2. (22)

After having replaced α , β , and γ by their definitions, we cancel the
term (µ2 +T σ2)2∥y∥4

2, which completes the proof. ■

Lemma VI.2. Given y ∈ CN and τ ∈ Z, |Ry [τ]| ≤ Ry [0].

Proof. Given τ , we express Ry [τ] as an inverse discrete Fourier
transform and apply the triangular inequality, yielding:

|Ry [τ]| ≤
1
N

N−1

∑
ω=0

∣∣∣|ŷ[ω]|2e2πiωτ/N
∣∣∣= 1

N

N−1

∑
ω=0

|ŷ[ω]|2. (23)

On the right hand side, we recognize the inverse discrete Fourier
transform of |ŷ|2 at lag zero, which concludes the proof. ■

Proof of Theorem II.4. Given j, we apply Proposition III.3 with
w =w j and y =ψ j. On one hand, for every τ > 0, |Rψ j [τ]|2 ≥ 0.
Thus:

V
[
∥w j ∗ψ j∥2

2
]
≥ 4µ

2
σ

2|Rψ j [0]|2 +2σ
4T |Rψ j [0]|2. (24)

We observe that 2µ2σ2 +σ4T 2 = (µ2 +σ2T )2 − µ4 and replace
|Rψ j [0]|2 by ∥ψ j∥4

2. Hence, after dividing by T/2:

V
[
∥w j ∗ψ j∥2

2
]
≥ 2

T

(
(µ2 +σ

2T )2 −µ
4)∥ψ j∥4

2. (25)

By applying Proposition II.2 with w=w j and y=ψ j , we recognize
the squared expected value: E

[
∥w j ∗ψ j∥2

2
]2

= (µ2 +σ2T )2∥ψ j∥4
2,

yielding the lower bound. On the other hand, Lemma VI.2 yields:

V
[
∥w j ∗ψ j∥2]≤ 4µ

2
σ

4
T−1

∑
τ=0

|Rψ j [0]|2+2σ
4

T

∑
τ=−T

(
T −|τ|

)
|Rψ j [0]|2.

(26)
The first sum has T equal terms. For the second sum, we compute:

T

∑
τ=−T

(
T −|τ|

)
= T +2

T

∑
τ=1

(
T − τ) = T +2

T (T −1)
2

= T 2. (27)

Thus, by replacing |Rψ j [0]|2 by ∥ψ j∥4
2, and similarly to Equation

(25):

V
[
∥w j ∗ψ j∥2

2
]
≤ (4µ

2
σ

2T +2σ
4T 2)∥ψ j∥4

2

≤ 2
(
(µ2 +σ

2T )2 −µ
4)∥ψ j∥4

2. (28)

Dividing by E
[
∥w j ∗ψ j∥2

2
]2 concludes the proof.

Moreover, for ψ j : n 7→ cδ[n− n0], we compute Rψ j = τ and
check the lower bound via Equations (24) and (25). Conversely, the
existence of multiple nonzero elements in ψ j implies that |ψ̂ j|2 is
nonconstant, and thus (sim. Lemma VI.2) that Rψ j has at least one
nonzero coefficient for some nonzero lag τ , leading to a contradiction.

■

Proof of Proposition III.2. Lemma VI.1 yields:

⟨w ∗y|w′ ∗y′⟩=wT
j ·QT (y,y

′) ·w j′ (29)

By the independence of the Gaussian vectors w,w′:

E
[
⟨w ∗y|w′ ∗y′⟩

]
= E

[
wT

j′
]
·QT (y,y

′) ·E
[
w j
]

= µ
2δT ·QT (y,y

′) ·δ
= µ

2QT (y,y
′)[0,0]. (30)

Recalling that QT (y,y
′)[0,0] = ⟨y|y′⟩ concludes the proof. ■

Proof of Proposition III.3. By Lemma VI.1:

E
[∣∣〈w ∗y|w′ ∗y′

〉∣∣2]= E
[〈
w ∗y|w′ ∗y′

〉〈
w ∗y|w′ ∗y′

〉]
= ∑

t,t ′,u,u′
R(y′,y)[t

′− t]R(y′,y)[u′−u]E
[
w[t]w′[t ′]w[u]w′[u′]

]
, (31)

where the indices t, t ′,u,u′ range between zero and (T − 1). We
distinguish six cases in the sum above:

1) if t = t ′ = u = u′ = 0, E
[
w[t]2

]
= E

[
w′[t ′]2

]
= µ2 +σ2. This

term is weighted by |R(y′,y)[0]|2.
2) if t = t ′ = u = u′ ̸= 0, E

[
w[t]2

]
= E

[
w′[t ′]2

]
= σ2. There are

(T −1) such terms, weighted by |R(y′,y)[0]|2.
3) if 0 = t = u ̸= t ′ = u′, E

[
w[t]2

]
= µ2 +σ2 and E

[
w′[t]2

]
= σ2.

These terms are weighted by |R(y′,y)[t
′]|2 for 0 < t ′ < T .

4) if t = u ̸= t ′ = u′ = 0, E
[
w[t]2

]
= σ2 and E

[
w′[t]2

]
= µ2 +σ2.

These terms are weighted by |R(y′,y)[−t]|2 for 0 < t < T .
5) if 0 ̸= t = u ̸= t ′ = u′ ̸= 0, E

[
w[t]2

]
= σ2 and E

[
w′[t]2

]
= σ2.

These terms are weighted by |R(y′,y)[t
′− t]|2 for 0 < t ̸= t ′ < T .

6) otherwise, the term equals zero.
We obtain: E

[∣∣〈w ∗y|w′ ∗y′
〉∣∣2]= αµ4 +β µ2σ2 + γσ4 with

α = |R(y′,y)[0]|2 = |⟨y|y′⟩|2, (32)

β = 2|R(y′,y)[0]|2 +
T−1

∑
τ=1

(
|R(y′,y)[τ]|2 + |R(y′,y)[−τ]|2

)
= 2

T−1

∑
τ=0

|R(y′,y)[τ]|2, (33)

γ = T |R(y′,y)[0]|2 +2
T−1

∑
τ=1

|R(y′,y)[τ]|2 + ∑
0<t ̸=t ′<T

|R(y′,y)[t
′− t]|2

=
T−1

∑
t=0

T−1

∑
t ′=0

|R(y′,y)[t
′− t]|2 =

T

∑
τ=−T

(
T −|τ|

)
|R(y′,y)[τ]|2. (34)

Proposition III.2 yields:

V
[
⟨w ∗y|w′ ∗y′

〉]
= E

[∣∣〈w ∗y|w′ ∗y′
〉∣∣2]− ∣∣E[〈w ∗y|w′ ∗y′

〉]∣∣2
=
(
α −|⟨y|y′⟩|2

)
µ

4 +β µ
2
σ

2 + γσ
4. (35)

After having replaced α , β , and γ by their definitions, we cancel the
term

(
α −|⟨y|y′⟩|2), which completes the proof. ■

Proof of Proposition III.4. By Definition III.1, by independence of
w j and w j′ , and by property of the Hermitian dot product in CN :

E
[
|(w j ∗ψ j)∧ (w j′ ∗ψ j′)|2

]
= E

[
∥w j ∗ψ j∥2

2∥w j′ ∗ψ j′∥2
2 −|⟨w j ∗ψ j|w j′ ∗ψ j′⟩|2

]
= E

[
∥w j ∗ψ j∥2]E[∥w j′ ∗ψ j′∥2]−E

[
|⟨w j ∗ψ j|w j′ ∗ψ j′⟩|2

]
.

(36)

Applying Propositions II.2, III.2, and III.3 concludes the proof. ■

Proof of Theorem III.5. By Propositions II.2 and III.4. ■
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