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Abstract

Injectivity is the defining property of a mapping that ensures no information is
lost and any input can be perfectly reconstructed from its output. By performing
hard thresholding, the ReLU function naturally interferes with this property, making
the injectivity analysis of ReLU layers in neural networks a challenging yet intriguing
task that has not yet been fully solved. This article establishes a frame theoretic per-
spective to approach this problem. The main objective is to develop a comprehensive
characterization of the injectivity behavior of ReLU layers in terms of all three involved
ingredients: (i) the weights, (ii) the bias, and (iii) the domain where the data is drawn
from. Maintaining a focus on practical applications, we limit our attention to bounded
domains and present two methods for numerically approximating a maximal bias for
given weights and data domains. These methods provide sufficient conditions for the
injectivity of a ReLU layer on those domains and yield a novel practical methodology
for studying the information loss in ReLU layers. Finally, we derive explicit recon-
struction formulas based on the duality concept from frame theory.

1 Introduction

The Rectified Linear Unit defined as ReLU(s) = max(0, t) for t ∈ R has become indispens-
able as a non-linear activation function in artificial neural networks [14, 21, 15, 25]. Since
originally introduced as a way to regularize the gradients in deep network architectures,
there have been hardly any networks that do not use ReLU activation or some derivation of
it [12, 18, 23].

A ReLU layer Cα(x) = ReLU(Cx−α) is the composition of an affine linear map compris-
ing the multiplication by a weight matrix C ∈ Rm×n and the shift by a bias vector α ∈ Rm,
with an entry-wise application of ReLU on its output. The injectivity of a ReLU layer, and
with that, the possibility of inverting it and inferring x from Cα(x), is a desired property
in various applications. There has been interest in building injective models and inverting
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them on their range to regularize ill-posed inverse problems or designing injective generative
models, such as normalizing flows, for manifold learning or compressed sensing [20, 27, 6].
Generally, knowing if a layer involves a loss of information increases the interpretability of
the network immensely. As such, one can use an inverse mapping to trace back each layer
output to its source input, which can help to decipher the decision-making process, diagnose
model behavior, identify biases, and study accountability. Although the injectivity of ReLU
layers has received increasing attention in recent years, it is still not fully understood, espe-
cially when it comes to the numerical verification in practice.

The goal of this paper is to demystify the injectivity of a single ReLU layer as a de-
terministic non-linear map on a comprehensive level. This involves a thorough analysis
of fundamental properties of ReLU layers that are relevant for applications, and different
characterizations of injectivity with respect to all properties involved, namely weights, bias,
and input domain. By translating selected theoretical results into algorithmic solutions we
present novel ways of verifying injectivity on bounded input domains in practice. Explicit
reconstruction formulas and their implementation, together with a brief local stability anal-
ysis complete the claim of the paper.

The methodology to achieve these goals is based on frame theory, a mathematical paradigm
that deals with stable, potentially redundant, and invertible representations of functions by
means of inner products [11]. To make use of this machinery and all tools that come with
it, we shall consider a weight matrix C ∈ Rm×n in terms of its row vectors

C =

−ϕ1−
...

−ϕm−

 . (1)

If C has more rows than columns (m ≥ n) and full rank, the collection of row vectors (ϕi)
m
i=1

is a spanning set for the domain space Rn. In other words, the associated linear transform
C : Rn → Rm is injective. In the context of frame theory, we say that (ϕi)

m
i=1 is a frame for

Rn [11] and C is the associated analysis operator. The application of C to x is interpreted
as measuring the correlation of x to all frame vectors ϕi via x 7→ (⟨x, ϕi⟩)mi=1. The resulting
so-called frame coefficients (⟨x, ϕi⟩)mi=1 give a (potentially redundant) representation of x,
from which we can always infer x explicitly. Roughly speaking, frame theory is the study of
“quantifying” injectivity of a redundant representation in the sense of its numerical stability
and constructing recovery maps with desired properties via the concept of dual frames. In
this sense, it provides exactly the right tools for the goal of the paper.

Although frame theory deals with linear representations, it has been shown to be suitable
for non-linear problems as well. One example is phase-retrieval [3] where, in the real setting,
one asks for the injectivity and stability of the map

C| . | : Rn/{±1} → Rm

x 7→
(∣∣⟨x, ϕi⟩

∣∣)m
i=1

.
(2)

It is well known that C| . | is injective if and only if for any partition of the collection
(⟨x, ϕi⟩)mi=1 into two sub-collections, at least one of them is a frame [3]. Inspired by this
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approach, we may write a ReLU layer analogously as the map

Cα : Rn → Rm

x 7→ (ReLU(⟨x, ϕi⟩ − αi))
m
i=1 .

(3)

In [26] (using another terminology) it has been shown that Cα is injective if and only if for
any x ∈ Rn the frame vectors that are not affected by ReLU are a frame. We shall call a
frame with this property α-rectifying on Rn. While this characterization forms the basis of
our work, we will focus on the practical assumption that, in applications, it may not always
be most informative to consider the entire Rn as the domain where a ReLU layer should be
injective. In fact, when considering standard normalization schemes of data sets for training
and testing neural networks, it seems more reasonable to study injectivity only on bounded
subsets K ⊆ Rn where the data is assumed or processed to live in. Indeed, a ReLU layer
might be injective on K but not on Rn. In this paper, we show that the choice of the data
domain can have a profound impact on the injectivity behavior of Cα, and discuss how to
leverage this fact in practice. Prototypical examples of such domains include the closed ball
in Rn of radius r > 0, given by Br = {x ∈ Rn : ∥x∥ ≤ r}, the closed donut arising by ex-
cluding small data points Dr,s = Br \ Bs with s < r, and the sphere S = {x ∈ Rn : ∥x∥ = 1}
[22, 19]. Furthermore, when considering two consecutive ReLU layers, we can restrict the
injectivity property of the second one to domains that lie in Rn

+, such as the non-negative
closed ball B+

r = Br∩Rn
+. The restriction of the domain of Cα from Rn to a bounded K ⊆ Rn

increases the feasibility and applicability of the problem in practice, while also making the
mathematical setting more versatile. Furthermore, it establishes a natural connection to the
bias vector and provides a framework where we can control the injectivity behavior through
these two ingredients. This in turn allows us to approach the injectivity analysis also algo-
rithmically.

The main theoretical component of this paper is a comprehensive characterization of the
injectivity of a ReLU layer as a deterministic map, summarized in the following theorem.

Theorem. Let Φ = (ϕi)
m
i=1 be a frame for Rn, α ∈ Rm, and ∅ ̸= K ⊆ Rn. Under the

assumptions that Φ includes a unique most correlated basis everywhere (Def 3.7), K is open
or strictly convex, and bias-exact for Φ (Def. 3.11), the following are equivalent.

(i) The ReLU layer Cα, associated with Φ and α, is injective on K.

(ii) The frame Φ is α-rectifying on K (Def 2.2, Thm 2.4, 2.5).

(iii) The domain K lies in the maximal domain K∗
α (Thm 3.4).

(iv) The values of the bias α do not exceed the values of the maximal bias α♯
K (Thm 3.12).

For any bias α the maximal domain K∗
α can be constructed explicitly as the union of in-

tersections of closed affine half-spaces. For any domain K the maximal bias α♯
K can be

approximated numerically via sampling or via the inscribing polytope associated with Φ.

The main practical component of the paper comprises two algorithmic constructions of
biases that approximate the maximal bias α♯

K from the theorem above in different situations.
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These can be used to study and effectively control the injectivity behavior of a ReLU layer in
practice. Moreover, using the duality concept from frame theory we derive inversion formulas
for injective ReLU layers that can be implemented easily as locally linear operators.

Related work

The approach in classical phase-retrieval in Rn by Balan et al. in [3] was decisive for the
idea of characterizing the injectivity of a ReLU layer in terms of a property of the associated
frame. The same approach is taken by Alharbi et al. to study the recovery of vectors
from saturated inner measurements [2]. In a machine learning context, Puthawala et al.
have introduced the notion of directed spanning sets in [26] as an equivalent concept to the
admissibility condition by Bruna et al. in [8] to characterize a ReLU layer to be injective on
Rn. While the primary goal in [26] is the study of globally injective ReLU-networks on Rn,
and the one in [8] is a Lipschitz stability analysis of ReLU layers, our goal is to demystify the
injectivity of a single ReLU layer in a more realistic setting, namely with any given weights
and biases on bounded input data domains K ⊆ Rn, and to provide methods of verifying
injectivity in practice. This extends the ideas and methods by Haider et al. introduced in
[17] significantly. Further related preprints are by Behrmann et al., who study the pre-images
of ReLU layers from a geometric point of view [5] and by Maillard et al., which focus on
injectivity of ReLU layers with random weights [24].

Outline

The paper is divided into four sections. In Section 2, we introduce α-rectifying frames as a
characterizing family of frames that are associated with ReLU layers that are injective on
a given input domain and discuss fundamental properties that are crucial for applications.
In Section 3, we study the interplay of input domain and bias vector and derive a maximal
domain and a maximal bias such that the associated ReLU layers become critically injective.
This leads to two further characterizations of injectivity. Moreover, we present two methods
to approximate the maximal bias and provide algorithmic solutions to apply them in practice.
Section 4 is dedicated to explicit reconstruction formulas for injective ReLU layers and a brief
local stability analysis of the recovery map.

2 Frames and the Injectivity of ReLU Layers

When applying a matrix C ∈ Rm×n to a vector x ∈ Rn we can reconstruct x if and only if
the collection of row vectors of C spans Rn. Frame theory offers a definition of a spanning
set that allows us to quantify “how good” it spans Rn. So, throughout this paper, we denote
a collection of m vectors by Φ = (ϕi)i∈I ⊂ Rn, using index sets I with |I| = m ≥ n. Then, Φ
is a frame for Rn if there are constants 0 < A ≤ B, called the frame bounds of Φ, such that

A · ∥x∥2 ≤
∑
i∈I

|⟨x, ϕi⟩|2 ≤ B · ∥x∥2 (4)

for all x ∈ Rn [10]. For J ⊆ I, we denote by ΦJ = (ϕi)i∈J the sub-collection of Φ with
respect to the index set J . Any frame with m = n is a basis and we will always assume
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that Φ does not contain the zero vector. It is easy to see that (4) is equivalent to Φ being
a spanning set and that the frame bounds A,B reflect the numerical stability properties of
the representation of x under Φ. The analysis operator associated with Φ is given as

C : Rn → Rm

x 7→ (⟨x, ϕi⟩)i∈I
(5)

mapping a vector x to its frame coefficients as discussed in the introduction. So finally,
we have that Φ is a frame, if and only if C is injective. Together with the assumption on
the input domain mentioned in the introduction, this motivates to define a ReLU layer as
follows.

Definition 2.1 (ReLU layer). A ReLU layer associated with a collection of weight vectors
Φ = (ϕi)i∈I ⊂ Rn, a bias vector α = (α1, ..., αm)

⊤ ∈ Rm and an input domain K ⊆ Rn is
defined as the non-linear map given by

Cα : K → Rm

x 7→ (ReLU(⟨x, ϕi⟩ − αi))
m
i=1 .

To encode the injectivity of Cα directly in terms of Φ we introduce a family of frames
called α-rectifying frames.

2.1 Alpha-rectifying frames

For any given x ∈ K the shift by the bias and the application of the ReLU function on the
frame coefficients act as a thresholding mechanism that neglects all frame elements ϕi where
⟨x, ϕi⟩ < αi, rendering them inactive. According to this observation, for x ∈ Rn and α ∈ Rm

we are interested in the index set associated with those frame elements that are active for x
and α. We shall denote it by

Iαx = {i ∈ I : ⟨x, ϕi⟩ ≥ αi}. (6)

Dual to this notion, for i ∈ I and α ∈ Rm we denote the closed affine half-space of points
where the frame element ϕi is active by

Ωα
i = {x ∈ Rn : ⟨x, ϕi⟩ ≥ αi}. (7)

The following definition gives the frame theoretic perspective to [26, Definition 1].

Definition 2.2 (α-rectifying frames). The collection Φ = (ϕi)i∈I ⊂ Rn is called α-rectifying
on K ⊆ Rn for α ∈ Rm if for all x ∈ K the sub-collection of active frame elements ΦIαx =
(ϕi)i∈Iαx is a frame for Rn.

Figure 1 illustrates the two notions in (6) and (7) on the closed unit ball B in R2 (left,
mid), and shows a simple example of an α-rectifying frame (right).

While many papers only consider ReLU layers without bias vectors and with input on
whole Rn [26, 24], for our approach, bias vectors and the input domain play important roles,
and the following basic properties of ReLU layers become crucial. Throughout the paper,
for α, α′ ∈ Rm we shall use the notation α ≤ α′ for αi ≤ α′

i for all i ∈ I, and α < α′ for
αi < α′

i for all i ∈ I.
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Ωα1
ϕ1

α1 > 0

x

Iα
x = ∅

Ωα1

ϕ1

α1 < 0 x

Iα
x = {1}

Ωα1

ϕ1

Ωα2

ϕ2

α1

α2
x

Iα
x = {1,2}

Figure 1: Illustrations of the notions Iαx and Ωα
i related to active frame elements on B. The

frame (ϕ1, ϕ2) in the most right example is α-rectifying on K if K ⊆ (Ωα
1 ∩ Ωα

2 ).

Proposition 2.3. Let Φ be α′-rectifying on K ′. The following holds.

(i) Φ is α′-rectifying on K for every K ⊆ K ′.

(ii) Φ is α-rectifying on K ′ for every α ≤ α′.

Hence, we are naturally interested in knowing the largest possible domains and biases
that allow the α-rectifying property. In Section 3 we prove that indeed one obtains full
characterizations of the injectivity of a ReLU layer via a maximal domain and a maximal
bias.

We now present the fundamental connection between the α-rectifying property and the
injectivity of Cα on K, forming the backbone of this paper. Theorems 2.4 and 2.5 address
the two directions separately, each focusing on specific properties of K, thereby generalizing
[26, Theorem 2].

Theorem 2.4 (Injectivity of ReLU layers I). Given Φ = (ϕi)i∈I ⊂ Rn, α ∈ Rm, and
∅ ≠ K ⊆ Rn. If Φ is α-rectifying on K, then Cβ is injective on K for all β < α. Moreover,
if K is open or convex, Cα is injective on K.

Recall that a set U is called strictly convex if for all x, y ∈ U and λ ∈ (0, 1), xλ :=
(1− λ)x− λy ∈ Ů , where Ů is the interior of U . In particular, Ů ̸= ∅.

Theorem 2.5 (Injectivity of ReLU layers II). Given Φ = (ϕi)i∈I ⊂ Rn, α ∈ Rm, and let
∅ ̸= K ⊆ Rn be open or strictly convex. If Cα is injective on K, then Φ is α-rectifying on
K.

Proof of Theorem 2.4. Let x, y ∈ K and assume Cβx = Cβy. Clearly,

⟨x, ϕi⟩ > βi if and only if ⟨y, ϕi⟩ > βi, (8)

from which we can deduce that ⟨x, ϕi⟩ = ⟨y, ϕi⟩ for all i ∈ Iβx . By assumption that Φ is
α-rectifying, ΦIαx is a frame, and since β < α we have that ΦIβx

is one, too. It follows that
x = y and therefore that Cβ is injective on K.
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To show the moreover part, let Cαx = Cαy, for x, y ∈ K. Clearly,

⟨x, ϕi⟩ = ⟨y, ϕi⟩ (9)

for all i ∈ Iαx ∩ Iαy . We will show that if K is open or convex, then ΦIαx ∩Iαy is a frame.
Let us first consider the case where K is open. We may choose ε > 0 such that the open
ball around x, denoted by B◦

ε (x), is contained in K. When assuming that x ̸= y then there
is δ < 1 with 0 < δ < ε · ∥x− y∥−1 such that

xδ := (1− δ)x+ δy ∈ B◦
ε (x). (10)

Now let i ∈ Iαxδ
. By the linearity of the inner product, we have the following.

If ⟨xδ, ϕi⟩ > αi then ⟨x, ϕi⟩ > αi and ⟨y, ϕi⟩ > αi. (11)

If ⟨xδ, ϕi⟩ = αi then ⟨x, ϕi⟩ = αi and ⟨y, ϕi⟩ = αi. (12)

Therefore, Ixδ
⊆ Iαx ∩ Iαy . By (10), we have that xδ ∈ K and since we assumed ΦIxδ

to be a
frame, so is ΦIαx ∩Iαy .
Now let us assume K to be convex. For λ ∈ (0, 1),

xλ := (1− λ)x+ λy ∈ K. (13)

By the same arguments as above, (11) and (12) hold for ⟨xλ, ϕi⟩, hence Ixλ
⊆ Iαx ∩ Iαy . By

assumption, ΦIxλ
is a frame and thereby, ΦIαx ∩Iαy is a frame. So for both cases, we can deduce

that x = y, hence Cα is injective.

Proof of Theorem 2.5. We prove the claim by counterposition. Assume that Φ is not α-
rectifying. Then there is x ∈ K such that (ϕi)i∈Iαx is not a frame. Hence, there is

0 ̸= r ∈ span(ϕi)
⊥
i∈Iαx . (14)

If K is open, for all sufficiently small ε > 0 we have that

y± := x± εr ∈ K.

For i ∈ Iαx , (14) implies that ⟨y+, ϕi⟩ = ⟨y−, ϕi⟩, leading to

max(0, ⟨y+, ϕi⟩ − αi) = ⟨x, ϕi⟩ − αi = max(0, ⟨y−, ϕi⟩ − αi). (15)

If Iαx = I, then (15) already implies Cαy+ = Cαy−, so that Cα is not injective on K.
To address the case Iαx ⊂ I, we recall that ⟨x, ϕi⟩ < αi holds for all i ∈ I \ Iαx . Therefore, we
may choose ε sufficiently small, such that y± ∈ K and

⟨y±, ϕi⟩ < αi, i ∈ I \ Iαx . (16)

Observation (16) leads to

0 = max(0, ⟨y±, ϕi⟩ − αi), i ∈ I \ Iαx . (17)
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According to (15) and (17), we derive Cαy+ = Cαy−. Thus, Cα is not injective on K.
Note that if K is strictly convex it contains more than one element and for every z ∈ K

where z ̸= x and λ ∈ (0, 1) with the same assumptions on x as above,

xλ := (1− λ)x− λz ∈ K̊.

Using the linearity of the inner product, there is λ sufficiently small such that

⟨xλ, ϕi⟩ < αi, i ∈ I \ Iαx . (18)

Since K̊ is open and not empty, we can apply the same argument as above with xλ to show
that Cα is not injective on K.

This shows that the injectivity of a ReLU layer is contingent upon topological properties
of the domain from which the data is drawn. For the cases Rn and Br, we have established
equivalence, where the former case corresponds to [26, Theorem 2]. Since the non-negative
ball B+

r = Br ∩Rn
+ is convex but not open or strictly convex, only the direction in Theorem

2.4 holds. In the case of the donut Dr,s = Br \ Bs, which is not open and not convex, only
the first part of Theorem 2.4 holds, i.e., injectivity for strictly smaller biases. In Section 3.1,
we give an example of a similar scenario where injectivity fails.

While the α-rectifying property makes the injectivity of a ReLU layer more accessible,
it remains challenging to verify it in practice. In the following, we discuss how specific
properties of the frame influence its α-rectifying property, and how to leverage them.

2.2 Normalized frames

It is a simple, yet, crucial observation that we may restrict the α-rectifying property to
frames with unit norm vectors by scaling the bias with the norms of the frame elements. In
the context of neural networks, normalizing the underlying frame (or the weight matrix in a
row-wise manner) is a standard normalization technique [30]. We write Φ ⊂ S.

Lemma 2.6. A frame Φ = (ϕi)i∈I ⊂ Rn is α-rectifying on K if and only if the normalized
frame Φ′ = (ϕi · ∥ϕi∥−1)i∈I ⊂ S is α′-rectifying on K, where α′

i = αi · ∥ϕi∥−1.

The statement follows from the fact that ⟨x, ϕi⟩ ≥ αi is equivalent to ⟨x, ϕi · ∥ϕi∥−1⟩ ≥
αi · ∥ϕi∥−1 for all x ∈ K. Therefore, we may always assume ∥ϕi∥ = 1 for all i ∈ I, which
simplifies the problem setting substantially. The norms can be reintroduced at any stage of
processing or analysis.

2.3 Full-spark frames

The effect of ReLU can be interpreted as introducing input-dependent erasures in the under-
lying frame, i.e., losing certain coefficients [16]. In this context, the spark of a frame has been
shown to be a useful concept. It is defined as the smallest number s ≥ n+ 1 of linearly de-
pendent frame elements that one can choose from Φ. In other words, any sub-collection with
s− 1 frame elements from Φ is a frame. Frames with s = n+ 1 are called full-spark frames.
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This family of frames has shown to be maximally robust to erasures [1] which makes the
full-spark property interesting for injective ReLU layers in particular. For phase retrieval, it
is known that if a full-spark frame has m ≥ 2n−1 elements then the phase-retrieval operator
(2) is injective [3]. For the ReLU case, knowing the spark of Φ relaxes the condition for a
frame to be α-rectifying to a counting argument.

Corollary 2.7. Let Φ be a frame with spark s then Φ is α-rectifying on K if and only if
|Iαx | ≥ s− 1 for all x ∈ K.

Although it is an NP-hard problem to verify if a given frame is full-spark, in a numerical
setting it is a mild condition that is almost surely satisfied in the presence of randomness.
Indeed, if the entries of the frame elements are i.i.d. samples from an absolutely continuous
probability distribution, then the associated random frame is full-spark with probability
one [1]. Since most initialization methods in neural networks are based on i.i.d. sampling
schemes, full-spark frames appear naturally in the context of deep learning.

2.4 Perturbed frames

For a bounded domain K the α-rectifying property is robust to perturbation. In particular,
small perturbations of an α-rectifying frame result in an α′-rectifying frame where α′ is close
to α.

Lemma 2.8. Let Φ be α-rectifying on a bounded domain K with M = supx∈K ∥x∥. For
ε > 0, a perturbed frame Φ′ = (ϕ′

i)i∈I satisfying ∥ϕi− ϕ′
i∥ < ε for all i ∈ I is α′-rectifying on

K with α′
i = αi − εM, i ∈ I.

Proof. Let x ∈ K, then for any i ∈ Iαx it holds that

⟨x, ϕ′
i⟩ = ⟨x, ϕi⟩ − ⟨x, ϕi − ϕ′

i⟩ > αi − ε∥x∥ ≥ αi − εM.

It is known that for any frame Φ there is an arbitrarily small perturbation such that the
resulting perturbed frame is full-spark [10]. Therefore, we may interpret Lemma 2.8 in the
sense that for any α-rectifying frame, there is an arbitrarily close full-spark frame that is
α′-rectifying with α′ being arbitrarily close to α.

2.5 Redundancy

One of the central properties of a frame is its redundancy, i.e., the ratio q = m
n
≥ 1.

For random ReLU layers with i.i.d. Gaussian entries and no bias, it has been studied at
which redundancy they become injective on Rn asymptotically [26, 24]. Let pm,n denote the
probability that Cα with m frame elements in Rn and α = 0 is injective then it has been
proven that q ≤ 3.3 implies that limn→∞ pm,n = 0 and q ≥ 9.091 implies that limn→∞ pm,n =
1. Furthermore, the authors in [24] state the conjecture that there exists a redundancy
q ∈ (6.6979, 6.6981) where the transition from non-injectivity to injectivity happens. We
will revisit this conjecture in a non-asymptotic setting in the experimental part later in the
paper (Section 3.3).
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In a non-random setting, a trivial leverage of redundancy is considering the collection
Ψ = (Φ,−Φ) for any given frame Φ. Doubling the redundancy in this symmetric way makes
Ψ become 0-rectifying on Rn by construction (see Figure 2 left) [8, 26, 32]. In a general deter-
ministic setting, however, it is difficult to establish sufficient conditions for the α-rectifying
property only in terms of redundancy as it depends heavily on the geometric characteristics
of the frame. As already mentioned in Section 2.3, this is in contrast to the phase-retrieval
setting, where a redundancy of q ≥ 2n−1

n
, together with a full spark assumption is already

sufficient for injectivity. In the ReLU case, it is known that a redundancy of two is necessary
when considering α = 0 and K = Rn [8]. We extend this known result from α = 0 to
arbitrary α in the following proposition.

Proposition 2.9. Any α-rectifying frame on Rn has at least redundancy two.

Proof. By assuming that the zero vector is not a frame element, we can choose x ∈ Rn with
⟨x, ϕi⟩ ≠ 0 for all i ∈ I. We denote

I+x = {i ∈ I : ⟨x, ϕi⟩ > 0}, (19)

I−x = {i ∈ I : ⟨x, ϕi⟩ < 0}. (20)

By the choice of x, the sets I+x and I−x form a disjoint partition of I. Let α ∈ Rm and define

t∗ := max
i∈I

αi

⟨x, ϕi⟩
(21)

then for all t > t∗ > 0 we have

⟨tx, ϕi⟩ > αi and ⟨−tx, ϕi⟩ < αi for i ∈ I+x (22)

⟨tx, ϕi⟩ < αi and ⟨−tx, ϕi⟩ > αi for i ∈ I−x . (23)

Hence, Iαtx = I+x and Iα−tx = I−x . We found two elements u = tx, v = −tx ∈ Rn with
Iαu ∩ Iαv = ∅. Assuming Φ to be α-rectifying on Rn implies that ΦIαu and ΦIαv are frames, i.e.,
contain at least n elements in particular. Since Iαu ∩ Iαv = ∅, it must hold that m ≥ 2n.

Assuming that the input for a ReLU layer is contained in Br, we find that the necessary
redundancy-two condition from Proposition 2.5 breaks. We use boldface notation for bias
vectors with constant entries, i.e., r ∈ Rm denotes the vector with entries r ∈ R.

Lemma 2.10. Any normalized frame is (−r)-rectifying on Br. If it is additionally a basis,
this is also necessary, i.e., −r is the maximal value.

Proof. Let x ∈ Br. Since ⟨x, ϕi⟩ = ∥x∥⟨ x
∥x∥ , ϕi⟩ ≥ −∥x∥ ≥ −r the first statement follows.

For the second, let Φ be a basis, then Φ is α-rectifying on Br if and only if for every x ∈ Br

it holds that I = Iαx . In particular, since −r ·Φ ⊂ Br and for every i ∈ I, the maximal choice
of the αi is determined by the fact that ⟨−r · ϕi, ϕi⟩ = −r.

This emphasizes that the choice of the input domain can have a significant impact on the
α-rectifying property. The following section will examine this interaction between domain
and bias in greater detail and explain how it can be leveraged.

10



3 Interplay of Domain and Bias

In the context of applications, we may find ourselves in a situation where we have provided a
trained ReLU layer and wish to ascertain whether it is injective for a specific data set. One
way to address this is to verify that the data set in question is contained within a set where
we have already established that the ReLU layer is injective. This leads to the following
natural question.

Q1: Given α, what is the largest domain K such that Φ is α-rectifying on K?

An alternative approach, building upon the inclusiveness property of ReLU layers (Prop.
2.3), is to ascertain that the values of the given bias do not exceed the values of a bias for
which we already know that the corresponding ReLU layer is injective. This leads to the
dual question to the one above.

Q2: Given K, what is the largest bias α such that Φ is α-rectifying on K?

Answering these questions will provide us with two further characterizations of the α-
rectifying property in terms of domain and bias, respectively. With this, we obtain alternative
ways of verifying the injectivity of the associated ReLU layer. To better understand how
bias and domain interact, we point out some basic scaling relations.

Lemma 3.1. Let Φ be α-rectifying on K. The following holds.

(i) Φ is (r · α)-rectifying on r ·K for any r > 0.

(ii) If α ≥ 0, then Φ is α-rectifying on r ·K with r ≥ 1.

(iii) If 0 ∈ K, then at least n bias values are non-positive.

Proof. All properties are easy to see.

(i) For r > 0, ⟨x, ϕi⟩ ≥ αi if and only if ⟨r · x, ϕi⟩ ≥ r · αi.

(ii) For r ≥ 1, ⟨x, ϕi⟩ ≥ αi implies ⟨r · x, ϕi⟩ ≥ r · αi ≥ αi.

(iii) For x = 0, we have that ΦIαx is a frame and 0 = ⟨0, ϕi⟩ ≥ αi holds for all i ∈ Iαx . Since
|Iαx | ≥ n, the claim follows.

Consequently, by either scaling the data or the bias, it may be possible to compensate for
situations where a frame is not α-rectifying on K but is on K ′ ⊊ K. The following examples
show such compensation through restrictions other than scaling.

Example 3.2. A basis can never be α-rectifying on Rn for any α. However, the standard
basis for Rn is 0-rectifying on Rn

+ (Figure 2 mid).
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ϕ1

ϕ2

−ϕ1

−ϕ2

ϕ1

ϕ2

ℝ2+

ϕ1

ϕ2ϕ3

Figure 2: Left: The frame composed of the standard basis and its negative elements is 0-
rectifying on R2. Mid: The standard basis is 0-rectifying on R2

+ and (−1)-rectifying on B.
Right: The triangle frame is (−1

2
)-rectifying on B, but never on R2 since there will always

be cones where only one element is active (lighter areas).

Example 3.3. The frame

Φ3 =

((
0
1

)
,

(
−

√
3/2

−1/2

)
,

(√
3/2
−1/2

))
is not α-rectifying on Rn for any α since m = 3 < 4 = 2n. However, by a geometric
argument (see Figure 2 right), it is easy to see that Φ is (−1

2
)-rectifying on B. Note that −1

2

is the largest possible value here.

This makes clear that it is essential to select the domain carefully if we want to effectively
study the injectivity behavior of the associated ReLU layer. This leads us to Question Q1 .

3.1 Maximal domain

We aim to identify the maximal domain K for a frame Φ and a bias α. This provides a
characterization of the α-rectifying property from a geometric point of view. Recall that for
i ∈ I and α ∈ Rm we denote the closed affine half-space where the frame element ϕi is active
for α by

Ωα
i = {x ∈ Rn : ⟨x, ϕi⟩ ≥ αi}. (24)

Extending the intuition from the example in Figure 1 (right), we find that any frame is
α-rectifying on the intersection of sufficiently many Ωα

i ’s. Restricting to minimal frames,
i.e., basis, reveals the characterization.

Theorem 3.4 (Maximal domain). Let Φ ⊂ Rn be a frame and α ∈ Rm. The maximal
domain where Φ is α-rectifying is given by

K∗
α =

⋃
J⊆I

ΦJ basis

⋂
i∈J

Ωα
i . (25)

In other words, Φ is α-rectifying on K if and only if K ⊆ K∗
α.
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ϕ1

ϕ2ϕ3

x1 x2

Ωα1

Ωα2Ωα3

K*α
Ωα1

ϕ1

Ωα2

ϕ2

Ωα3

ϕ3

K*α
ϕ1

ϕ2

ϕ3

ϕ4

ϕ5
K2

Figure 3: The dark areas in the left and mid picture indicate the maximal domains K∗
α for

the triangle frame with zero bias (left), and a normalized random frame with random bias
(mid). The right illustration corresponds to Example 3.10. We point out how K2 = {x ∈
K : 2 ∈ J∗(x)} looks like, where J∗(x) is the most correlated basis for x, see Definition 3.7.

Proof. Let x ∈ K. Assuming Φ to be α-rectifying on K, then ΦIαx is a frame. Since (in
Rn) every frame contains a basis, there is L ⊆ Iαx such that the sub-collection ΦL is a basis.
Clearly, ⟨x, ϕi⟩ ≥ αi still holds for all i ∈ L, hence, x ∈ K∗

α.
For the converse direction, by definition of K∗

α for all x ∈ K∗
α there is M ⊆ I with

⟨x, ϕi⟩ ≥ αi for all i ∈ M such that ΦM is a basis. Since M ⊆ Iαx , it follows that ΦIαx is a
frame.

Using Theorem 3.4 we find that any normalized frame Φ ⊂ S is α-rectifying on the closed
ball Br if and only if

r ≤ inf
x∈Rn\K∗

α

∥x∥.

Another consequence of the theorem, together with (ii) of Lemma 3.1 is that Φ is 0-rectifying
on Br if and only if Φ is 0-rectifying on Rn. Hence, in this setting, checking a small neighbor-
hood around the origin is already sufficient for the entire space. Note that the implication
does not hold for α < 0. We refer to Example 3.3 for an example.

The characterization in Theorem 3.4 further allows extending the implication from the
α-rectifying property to the injectivity of Cα (Theorem 2.4) to domains that are not open
or convex, such as the sphere S, the donut Dr,s, and discrete data sets.

Corollary 3.5. Let Φ = (ϕi)i∈I ⊂ Rn, α ∈ Rm and ∅ ≠ K ⊆ O ⊆ K∗
α for O open or convex.

If Φ is α-rectifying on K, then Cα is injective on K.

Proof. By Theorem 3.4, Φ is α-rectifying on O. Since O is open or convex, by Theorem 2.5,
Cα is injective on O, hence also on K ⊆ O.

Note that, in general, the set K∗
α is neither open nor convex. We can use this to demon-

strate that a violation of the assumptions on K in Theorem 2.4 (i.e., not open and not
convex) indeed leads to the conclusion that Cα is not injective.
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Example 3.6. Consider the frame Φ3 defined in Example 3.3, and look at

x1 =

(
1/2√
3/2

)
, x2 =

(
−1/2√

3/2

)
,

(see Figure 3 left). For α = 0 we have that x1, x2 ∈ K∗
α but also that Cαx1 = Cαx2. Hence,

by Theorem 3.4, Φ is α-rectifying on K∗
α but Cα is not injective on K∗

α.

A similar example can be constructed for the standard basis in Rn, α = 0, and K = B+
r .

See Figure 2 (mid) for an illustration in R2. The geometric intuition from the construction
of the maximal domain reveals a natural trade-off to the bias vector, where

α′ ≥ α ⇒ K∗
α′ ⊆ K∗

α.

This should serve as the linking idea to the fact that finding a maximal bias for the α-
rectifying property can reveal another perspective to Theorem 3.4. With this, we proceed
to answer Question Q2 .

3.2 Maximal bias

We aim to construct a maximal bias for a given frame Φ and domain K. This provides a
characterization of the α-rectifying property which is particularly suitable for verifying it in
applications as it is straightforward to implement numerically. Our approach to this is to
decompose a frame Φ into sub-frames with highly correlated frame elements and identify
the smallest analysis coefficients among all points x ∈ K associated with these sub-frames.
We present two approaches for such a decomposition. Approach A is based on finding the
n most correlated elements of Φ for each x ∈ K. It allows us to identify the maximal
bias and with this the characterization of the α-rectifying property of Φ under reasonable
assumptions. Approach B, first introduced in [17], is based on the vertex-facet configuration
of the inscribing polytope associated with Φ. It gives a geometrically intuitive sufficient
condition for the α-rectifying property of Φ but yields the maximal bias only in special
situations. Algorithmic solutions are provided along with the theoretical results.

Approach A: Most correlated bases

The construction of the maximal bias is based on the idea of finding the least correlated
frame element in the most correlated basis among all x ∈ K.

Definition 3.7. Let Φ be a frame and x ∈ K. We call ΦJ∗(x) a most correlated basis for x
if J∗(x) ⊆ I satisfies that for all J ⊆ I such that ΦJ is a basis it holds that

min
j∈J
⟨x, ϕj⟩ ≤ min

j∈J∗(x)
⟨x, ϕj⟩. (26)

We say that Φ includes a unique most correlated basis everywhere if J∗(x) is unique for every
x ∈ K.
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To give an illustration, in the setting of Example 3.6 we have that J∗(x1) = {1, 3} and
J∗(x2) = {1, 2}. Alternatively, we may interpret the condition in (26) in the sense that J∗(x)
maximizes the functional

α(x) = max
J⊆I

ΦJ basis

min
j∈J
⟨x, ϕj⟩. (27)

As a preliminary stage, we construct a maximal constant bias. This construction is similar
to the one for the critical saturation level in [2].

Proposition 3.8. Let Φ be a frame and K ⊆ Rn. The maximal constant bias for Φ and K
is given by αc with

αc = inf
x∈K

max
J⊆I

ΦJ basis

min
j∈J
⟨x, ϕj⟩ = inf

x∈K
min

j∈J∗(x)
⟨x, ϕj⟩. (28)

In other words, Φ is r-rectifying on K if and only if r ≤ αc.

Proof. First, we show that Φ is αc-rectifying on K. Let x ∈ K then there is a basis ΦJ(x)

such that for all j ∈ J(x)
⟨x, ϕj⟩ ≥ min

j∈J(x)
⟨x, ϕj⟩ ≥ αc.

Since ΦJ(x) is a frame, Φ is αc-rectifying on K.
Now let r ∈ R and assume that Φ is r-rectifying on K. For any x ∈ K we deduce

r ≤ inf
x∈K

min
j∈Irx
⟨x, ϕj⟩ ≤ inf

x∈K
min

j∈J⊆Irx
ΦJ basis

⟨x, ϕj⟩ ≤ inf
x∈K

max
J⊆I

ΦJ basis

min
j∈J
⟨x, ϕj⟩ = αc. (29)

To construct a (non-constant) maximal bias vector we restrict ourselves to frames that
include a unique most correlated basis everywhere. Similar to the full-spark assumption, this
is a mild condition in a numerical setting since for any frame there is an arbitrarily small
perturbation such that the resulting perturbed frame includes a unique most correlated basis
everywhere (c.f. Lemma 2.8). If the frame is full-spark then the most correlated basis for x is
given by the collection of the n frame elements which have the largest frame coefficients with
x. A random frame fulfills this condition with probability one. Under this assumption, we
can partition K uniquely into subsets that are associated with a frame element that belongs
to a most correlated basis. For every i ∈ I we denote the corresponding set by

Ki = {x ∈ K : i ∈ J∗(x)}. (30)

Since every x ∈ K has a most correlated basis
⋃

i∈I Ki = K indeed holds. The right
picture in Figure 3 illustrates the set Ki in R2, and the right plot in Figure 4 illustrates the
decomposition of S in R3 into Ki’s. By minimizing the frame coefficients of x ∈ Ki similar
to (28) we indeed obtain a bias such that Φ possesses the α-rectifying property but it is in
general not maximal.
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Proposition 3.9. Let Φ be a frame that includes a unique most correlated basis everywhere,
and let K ⊆ Rn. If α♭

K is given as (
α♭
K

)
i
= inf

x∈Ki

⟨x, ϕi⟩, (31)

then Φ is α♭
K-rectifying on K.

Proof. Let x ∈ K then ⟨x, ϕj⟩ ≥ (α♭
K)j for all j ∈ J∗(x). Since ΦJ∗(x) is a basis, Φ is

α♭
K-rectifying on K.

Note that if Ki is empty then ϕi is never contained in a most correlated basis. This
means that ϕi is irrelevant for the α-rectifying property of Φ, i.e., the corresponding bias
can be chosen arbitrarily large without affecting it. We shall exclude these cases from the
estimation for a maximal bias.

Moreover, although α♭
K gives a simple and intuitive indication of the critical bias, there

is still room for increasing this bias while maintaining the α-rectifying property. Instead of
minimizing over Ki as in Proposition 3.8, we shall minimize over the set of all points x such
that i ∈ J∗(x) and no element outside the most correlated basis is active for x and α♭

K . This
set is given as

K♯
i = Ki \

( ⋂
y∈Ki

⋃
j /∈J∗(y)

Ω
α♭
K

j

)
. (32)

Since K♯
i is a subset of Ki the bias values that we get from minimizing over the K♯

i will

be larger than the ones of α♭
K . However, note that if Ki ⊆

(⋂
y∈Ki

⋃
j /∈J∗(y) Ω

α♯
K

j

)
then

whenever ϕi belongs to the most correlated basis for x, there is additionally another active
frame element from outside the most correlated basis. Similarly to when Ki = ∅, the frame
element ϕi can then be interpreted as being redundant in the sense that it can be completely
removed from Φ while preserving the α-rectifying property. We give an example of such a
pathological situation.

Example 3.10. For the frame

Φ =

((
1
0

)
,

(
1/

√
2

1/
√
2

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

))
and K = B we have that α♭

B = 0 and

K2 =

{
x = s ·

(
cos t
sin t

)
: t ∈

[
−3π

8
,
3π

8

]
, s ∈ [0, 1]

}
.

The right picture in Figure 3 shows this setting. For every x ∈ K2 there is an element outside
the most correlated basis that is additionally active. It follows that K♯

2 = ∅. Hence, ϕ2 is
redundant for the α-rectifying property of Φ.

Hence, to guarantee that a maximal bias exists we shall assume K♯
i ̸= ∅ for all i ∈ I.

Definition 3.11. We call K ⊆ Rn to be bias-exact for Φ if K♯
i ̸= ∅ for all i ∈ I, where K♯

i

is defined as in (32).
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The following theorem contains the main result on the maximal bias and represents the
counterpart to Theorem 3.4 on the maximal domain.

Theorem 3.12 (Maximal bias). Let Φ be a frame that includes a unique most correlated
basis everywhere and K ⊆ Rn be bias-exact for Φ. The maximal bias for Φ and K is given
by α♯

K with (
α♯
K

)
i
= inf

x∈K♯
i

⟨x, ϕi⟩. (33)

In other words, Φ is α-rectifying on K if and only if α ≤ α♯
K.

Proof. For the converse direction, we have that ⟨x, ϕj⟩ ≥ (α♯
K)j for all j ∈ J∗(x) and x ∈

K♯
j ̸= ∅. Since ΦJ∗(x) is a basis, Φ is α♯

K-rectifying on K.
We show the implication direction by counterposition. Let i ∈ I and assume that Φ

is α-rectifying on K where α is given by αi = (α♯
K)i + ε for some ε > 0 and αj = (α♯

K)j
for j ̸= i. By definition of the infimum in (33), the set K♯

i (32), and the construction and
uniqueness of the most correlated basis (27) there is x0 ∈ Ki such that(

α♯
K

)
i
< ⟨x0, ϕi⟩ <

(
α♯
K

)
i
+ ε and ⟨x0, ϕj⟩ <

(
α♯
K

)
j

(34)

for all j /∈ J∗(x0). This implies that the active coordinates for x0 and α are exactly given by

Iαx0
= J∗(x0) \ {i}.

As a consequence, ΦIαx0
is not a frame. Therefore, Φ is not α-rectifying on Ki, finishing the

proof.

Note that while assuming uniqueness of the most correlated basis everywhere is natural in
the numerical setting, it excludes frames that exhibit certain symmetries, such as the frame
from Example 3.10. In such a case, the computations of the biases in (31) and (33) will
in general depend on the choice of the most correlated basis and therefore give ambiguous
results. By including a condition that chooses one of the most correlated bases, Proposition
3.9 and Theorem 3.12 can also be formulated without the uniqueness everywhere assump-
tion. We will not pursue this idea here.

Summarizing, Proposition 3.9 provides a simple and intuitive sufficient condition for the
α-rectifying property on K via the bias vector α♭

K . On the other hand, Theorem 3.12 pro-
vides a full characterization via the more complicated bias vector α♯

K under some additional
assumptions that are difficult to check in practice. In fact, except for special situations, it
is unclear how to compute both of the presented bias vectors explicitly. To implement the
construction of a bias for verifying injectivity in applications, we therefore present an algo-
rithmic approach that computes α♭

XN
for a finite sampling set XN ⊂ K as an approximation

for α♭
K .

Algorithmic solution for Approach A. We show how α♭
K can be approximated nu-

merically via sampling. Let XN = (xk)
N
k=1 ⊂ K be a sequence of N samples in K. By
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iteratively updating the values of the bias estimation corresponding to the most correlated
basis of the current sample as in Proposition 3.9, we obtain an approximation of α♭

K through
the sampling set XN . To measure the sampling error quantitatively, we use the Euclidean
covering radius (or ”mesh norm“) of XN for K [13], defined by

ρ(XN ;K) = sup
x∈K

min
1≤i≤N

∥x− xi∥. (35)

Theorem 3.13 (Sampling-based Bias Estimation). Let XN = {xi}Ni=1 ⊂ K and Φ ⊂ S be a
normalized full-spark frame. Choose α(0) ∈ Rm and iteratively define for all 1 ≤ k ≤ N and
i ∈ J∗(xk)

(α(k))i = min
{
⟨xk, ϕi⟩, α(k−1)

i

}
. (36)

Then Φ is α(N)-rectifying on XN . Moreover, Φ is (α(N) − ρ(XN ;K))-rectifying on K.

If the elements in Φ are not normalized, we can extend the statement above by including
the norms w = (∥ϕi∥)i∈I , obtaining that Φ is (α(N) − ρ(XN ;K) · w)-rectifying on K. If the
frame elements of Φ lie in K, a good initialization is starting the bias estimation with the
frame elements themselves as samples. Otherwise, we may set (α(0))i =∞ for all i ∈ I.

Proof of Theorem 3.13. Let x ∈ K, then there is xi ∈ XN with ∥x − xi∥ ≤ ρ(XN ;K).

Furthermore, for every j ∈ Iα(N)

xi
it holds that

(α(N))j ≤ ⟨xi, ϕj⟩
= ⟨xi − x, ϕj⟩+ ⟨x, ϕj⟩
≤ ∥x− xi∥+ ⟨x, ϕj⟩
≤ ρ(XN ;K) + ⟨x, ϕj⟩.

(37)

By rearranging (37) it follows that ⟨x, ϕj⟩ ≥ (α(N))j − ρ(XN ;K). We deduce that Iα
(N)

xi
⊆

I
α(N)−ρ(XN ;K)
x for all x ∈ K. Clearly, Φ is α(N)-rectifying on XN by construction. Using (37),
the second claim follows immediately.

Implementing the algorithm described in Theorem 3.13 can be done via a Monte-Carlo
approach, where XN is a collection of N random samples on K w.r.t. some probability
measure on K, see Appendix C1. We demonstrate numerical experiments in Section 3.3.
Intuitively, we want a measure that guarantees a small covering radius ρ(XN ;K) for large N ,
such that α(N) converges to α♭

K in probability. The uniform distribution on Br is a possible
example. If XN are i.i.d. uniform samples on S the expectation of ρ(XN ;S) is given by

E[ρ(XN ;S)] ≍
(
log(N)

N

) 1
n

. (38)

The above estimate and more explicit tail-bound estimates for the probability distribution of
ρ(XN ;S) are derived in [28]. Unfortunately, this indicates that in high dimensions it becomes
infeasible to handle the covering radius only by increasing the number of test samples N .
Hence, it appears necessary to construct the sampling sequenceXN in a more structured way,
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e.g., by quasi Monte-Carlo methods [7], or by sampling directly from the distribution of the
dataset. With the latter approach, the number of sampling points for a good approximation
of α♭

K can potentially be reduced, and the injectivity of the ReLU layer is ensured on a
domain that is tailored to the dataset.

Approach B: Facets of the inscribing polytope

We obtain another natural decomposition of Φ into sub-frames with high correlation via the
convex polytope that arises from taking the convex hull of the set of all elements in Φ [17].
This so-called inscribing polytope of Φ [29] is given by

PΦ = {x ∈ Rn : x =
∑
i∈I

ci · ϕi, ci ≥ 0,
∑
i∈I

ci = 1}. (39)

Any non-empty intersection of PΦ with an affine half-space such that none of the interior
points of PΦ (w.r.t. the induced topology on PΦ) lie on its boundary is called a face of PΦ

[33]. The 0-dimensional faces of PΦ are known as vertices and the (n− 1)-dimensional faces
are called facets. Assuming normalized frames here (Φ ⊂ S) the set of vertices of PΦ always
coincides with the set of frame elements of Φ. Note that this is generally the case if the
elements in Φ lie in a strictly convex set. Moreover, every facet is a convex polytope where
the vertices coincide with a sub-collection of Φ, and every element occurs as a vertex at least
once. We refer to Figure 5 for an illustration in R3. For a facet F , we denote the index set
corresponding to its vertices by

IF = {i ∈ I : ϕi ∈ F}. (40)

The following property is key, stated and proven in [17].

Lemma 3.14. Let Φ be a frame and F be a facet of PΦ. If 0 /∈ F , then ΦIF is a frame.

This ensures that the facets of PΦ provide a natural decomposition into sub-frames ΦIF

of Φ. Moreover, for any facet F , there is a ∈ Rn, a ̸= 0 and b ∈ R such that F = {x ∈ PΦ :
⟨a, x⟩ = b}, and therefore,

⟨a, ϕk⟩ = b, for k ∈ IF ,
⟨a, ϕℓ⟩ < b, for ℓ /∈ IF .

Hence, the vertices of any facet are a frame that is highly correlated to all points “close” to
the facet. In particular, ΦIF is the most correlated basis for the normal vector a.

Now, analog to the decomposition of K using most correlated bases (30) we can de-
compose K into facet-specific subsets FK

j , each associated with a facet Fj of PΦ (according
to some enumeration of the facets). A natural and practical approach in this setting is a
decomposition into conical caps resulting in

FK
j = cone(Fj) ∩K = {x ∈ K : x = cy , y ∈ Fj, c ≥ 0}. (41)

Figure 4 shows the facets Fj of the inscribing polytope (left), and the decomposition of S
into spherical caps F S

j (mid) for a i.i.d. randomly generated frame Φ with elements on S.
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Figure 4: The three subplots show different decompositions of the sphere in R3. The black
dots indicate the m = 12 frame elements of a random frame on S. From left to right: The
facets Fj of the inscribing polytope PΦ, the associated spherical caps F S

j = cone(Fj) ∩ S,
and the spherical patches associated to different most correlated bases obtained by J∗(x).
While the facets provide a very intuitive and simple decomposition into sub-frames, the
decomposition via the most correlated bases minimizes the correlation directly.

To guarantee that K =
⋃

j F
K
j and that 0 does not lie on any of the facets (requirement for

using Lemma 3.14) we have to assume that 0 lies in the interior of PΦ (w.r.t. the topology
in Rn). The property of Φ that ensures this was introduced in [5, Definition 1], where Φ
is called omnidirectional. Equivalently, we can say that there is no half-space containing
all elements of Φ, which can be easily verified numerically via convex optimization, see the
appendix in [5]. Moreover, every non-omnidirectional frame can be made omnidirectional by
including a vector constructed as the negative normalized mean of all frame elements, see
Appendix B.

Remark. The construction of the FK
j using cones and the assumption of omnidirectionality

are natural if K is centered around the origin. In other situations, one might want to come
up with alternative constructions of FK

j and a different notion of omnidirectionality that are
more suited to the geometry K. In this work, we restrict ourselves to the described setting.

Assuming omnidirectionality, we can use Lemma 3.14 to identify the minimal analysis
coefficient ⟨x, ϕi⟩ that can occur for any x contained in any FK

j that contains ϕi. This
guarantees that for any x ∈ FK

j the sub-frame ΦIFj
is active. Following [17], the procedure

is called polytope bias estimation (PBE). The following theorem generalizes the results in
[17] from Br and B+

r to general bounded K.

Theorem 3.15 (Polytope Bias Estimation). Let Φ ⊂ S be a normalized omnidirectional
frame and K ⊆ Rn bounded. Then Φ is α∆

K-rectifying on K ⊆ Rn with α∆
K given by(

α∆
K

)
i
= inf

x∈FK
j

j:ϕi∈Fj

⟨x, ϕi⟩. (42)

Proof. Since Φ is omnidirectional, for any x ∈ K there is a facet Fj such that x ∈ FK
j . It

follows from (42) that ⟨x, ϕi⟩ ≥
(
α∆
K

)
i
for all i ∈ IFj

. By Lemma 3.14, ΦIFj
is a frame, hence,

Φ is α∆
K-rectifying on K.
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IF1 = J*(x) = {1,2,3}

ϕ1
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x

IF2 = {2,3,4} J*(x) = {1,2,3}

F2
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(αΔ! )2 = inf ⟨y, ϕ2⟩

ϕ2
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j

j : ϕ2 ∈ Fj

F2

F3
F4

F5

F1

Figure 5: For the Icosahedron frame we have that x ∈ Fj ⇔ IFj
= J∗(x) (left). For less

regular frames, this does not hold anymore (mid). The right picture illustrates the PBE
on B for the Icosahedron frame. To get

(
α∆
B
)
2
the infima are taken over the points in the

conical parts (dark gray area) for all adjacent facets of ϕ2 (blue).

This procedure naturally takes the geometry of the frame into account and provides an
intuitive way of estimating a large bias vector such that the frame becomes α-rectifying.
Note, however, that in general this only yields a sufficient condition. A special case where
it is also necessary is discussed in Lemma 3.17. In the following, we demonstrate how the
PBE simplifies for specific concrete situations.

Algorithmic solution for Approach B. The advantage of the PBE is that for sim-
ple standard domains K it is easy to compute α∆

K via linear programs. In the following
proposition, we formulate the PBE for five prototypical domains. We provide a detailed dis-
cussion and corresponding pseudo-code for implementing the corresponding optimizations in
Appendix C.

Proposition 3.16. Let Φ ⊂ S be a normalized omnidirectional frame. The following holds.

(i) Φ is α∆
Φ -rectifying on the boundary of the polytope ∂PΦ =

⋃
j Fj with α∆

Φ given by(
α∆
Φ

)
i
= min

ℓ∈IFj

j:ϕi∈Fj

⟨ϕℓ, ϕi⟩.

(ii) Φ is α∆
S -rectifying on the sphere S with α∆

S given by(
α∆
S
)
i
= min{ min

x∈F S
j

j:ϕi∈Fj

⟨x, ϕi⟩,
(
α∆
Φ

)
i
}.

The inner minima are the solutions of convex linear programs. In particular, they are
equal to

(
α∆
Φ

)
i
whenever they are non-negative.
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(iii) Φ is (r−1 · α∆
B )-rectifying on the donut Dr,s for 0 ≤ s < r with α∆

B given by(
α∆
B
)
i
= min{s,

(
α∆
S
)
i
}.

The case s = 0 yields a bias estimation for the closed ball Br (Figure 5).

(iv) Let J+ = {j ∈ I : Fj ∩Rn
+ ̸= ∅} and I+ =

⋃
j∈J+ IFj

then Φ is (r−1 · α∆
B+)-rectifying on

the non-negative part of the ball B+
r with α∆

B+ given by

(
α∆
B+

)
i
=

{(
α∆
B
)
i

for i ∈ I+

si else,
(43)

where si ∈ R is arbitrary.

(v) If α∆
Φ ≥ 0, then (s · ϕi)i∈I for s ≥ 0 is

(
s · α∆

Φ

)
-rectifying on (B̊s)

c = Rn \ B̊s.

Proof. The points (i)− (iv) are direct consequences of [17, Theorem 4.4 and Theorem 4.6],
where detailed proofs can be found. To show (v), note that (s · ϕi)i∈I has the same combi-
natorial facet structure as Φ and therefore it is still omnidirectional. In particular,

(B̊s)
c = {x = sty : y ∈ S, t ≥ 1}.

The statement follows by ⟨sty, ϕi⟩ ≥ s ·
(
α∆
Φ

)
i
for t ≥ 1 and s ≥ 0.

Other than the Monte-Carlo sampling-based approach, this bias estimation procedure
yields a deterministic sufficient condition for the α-rectifying property, which is necessary
only in special situations. In general, there are two properties of the inscribing polytope PΦ

that affect the PBE in a way that the estimated biases become smaller.

(1) The more vertices a facet has, the smaller the infima in (42) become. In the case where
all facets have the minimal number of n vertices, PΦ is called simplicial. It is known
that a polytope with vertices that are i.i.d. uniform samples on S is simplicial with
probability one [9].

(2) The decomposition of K using cones in (41) is natural and convenient for implemen-
tation, but leads to a sub-optimal partition if PΦ is geometrically very irregular, i.e.,
the sizes of the facets are significantly different. In such a scenario, for x ∈ FK

j where
Fj is a very large facet, there might be a smaller neighboring facet Fk which provides
larger analysis coefficients for x and, hence, a better estimation. For an illustration of
such a situation see the center plot in Figure 5.

For frames with inscribing polytopes that are simplicial and regular, we can show that the
PBE indeed yields a maximal bias. We set K = S.

Lemma 3.17. Let Φ ⊂ S be a normalized omnidirectional frame such that PΦ is simplicial
and for all i ∈ I it holds that ⟨ϕi, ϕk⟩ = ⟨ϕi, ϕℓ⟩ for all ϕk, ϕℓ sharing a facet with ϕi. Then
Φ is α-rectifying on S if and only if α ≤ α∆

S .

22



Proof. The converse direction directly follows from Theorem 3.15. We show the implication
direction by counterposition. At first note that the regularity condition implies that α∆

S is
constant. Let α ∈ Rm be such that αi >

(
α∆
S
)
i
for fixed i ∈ I. There is a facet F with i ∈ IF

and x∗ ∈ F S satisfying ⟨x∗, ϕi⟩ =
(
α∆
S
)
i
< αi. By regularity, it follows that Iαx∗ = IF \ {i}.

Since PΦ is simplicial ΦIF \{i} is not a frame, hence, Φ is not α-rectifying on S.

Examples for this are frames whose inscribing polytopes are convex regular polytopes in
Rn. In a more general sense, we expect the PBE to be very effective for frames with evenly
distributed frame elements.

Remark. The two bias estimation procedures described in Approach A and B are fundamen-
tally linked. For each facet F of PΦ the hole radius of F is defined as the Euclidean distance
from the boundary to the center of its spherical cap F S (41). The Euclidean covering radius
(35) of Φ for S is the largest hole radius among all facets [31].

3.3 Numerical experiments

For a given sampling sequence XN and a full-spark assumption on Φ, the numerical im-
plementation of the sampling-based bias estimation in Theorem 3.13 is straightforward.
Similarly, there are convex hull algorithms available, such that the implementation of the
cases of the PBE from Proposition 3.16 is straightforward, too. Besides the pseudo-code
found in the appendix, we provide concrete implementations in Python, together with
the code for reproducing all experiments in this section in the accompanying repository
https://github.com/danedane-haider/Alpha-rectifying-frames.

Evolution towards injectivity (Approach A)

We demonstrate the basic functionality of the Monte-Carlo sampling-based algorithm. For
this, we choose the frame Φ and the sampling sequences XN to consist of i.i.d. uniform
samples on B. For every step in the approximation of α♭

B we measure the proportion of
samples from an unseen test sampling sequence YM (also i.i.d. uniform on B), for which Φ is
α(k)-rectifying. Figure 6 shows the empirical mean and variance over 1000 independent trials
of this procedure for two different dimensions, n = 3 (left) and n = 30 (right), and three
different redundancies (2, 3.3, and 9), respectively. We observe that in some configurations
the associated ReLU layer is injective already after a few hundred iterations. In others, it
takes up to 1000 iterations. It is especially fast for ReLU layers in low dimensions with
low redundancy. This can be explained by the fact that for draws of Φ which yield very
unevenly distributed points on B (which happens more likely in high dimensions with high
redundancy) the iterative scheme struggles to update α(k) efficiently, which results in the
procedure taking particularly long. In general, all tested examples became injective reliably.

Effect of redundancy (Approach A)

We use approximations of α♭
B to verify the injectivity of ReLU layers with random weights

and biases systematically for different redundancies. Thereby, we numerically verify the
conjecture stated in [24] that the transition from non-injectivity to injectivity happens at
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Figure 6: Per iteration k, the plots show the proportion of a test sample sequence YM where
the ReLU layer with bias α(k) is injective. Left: n = 3. Right: n = 30; Both for redundancies
2, 3.3, and 9. The ReLU layers are becoming injective reliably after about 104 iterations.
The procedure is fastest for low dimensions and low redundancy.

a redundancy q ∈ (6.6979, 6.6981) in a non-asymptotic setting. We let both, the frame
Φ and the sampling sequence XN contain i.i.d. standard normal points and compute α(N)

with N = 5 · 105 for all redundancy settings where 2 ≤ n ≤ 30 and n ≤ m ≤ 150. By
Theorem 3.13, we know that for every setting Φ is α(N)-rectifying on XN . Inspired by
the asymptotic expression for the covering radius in (38), we subtract a correcting term

of ρ∗(n,N) = 0.05 ·
(

log(N)
N

) 1
n
to compensate for insufficient amount of sampling in higher

dimensions. This yields that for every setting we have that Φ is
(
α(N) − ρ∗(n,N)

)
-rectifying

on B with high probability. The factor 0.05 was chosen experimentally.
To test if the ReLU layer associated with one of the realizations of Φ is injective for a

given bias α we have to verify that α ≤ α(N) − ρ∗(n,N). We compare three settings for
biases with i.i.d. normal values with mean zero and variances,

(i) σ2 = 0 (ii) σ2 = 0.1 (iii) σ2 = 1

Figure 7 shows the results for the three settings from left to right. Setting (i) is the one
where the conjecture in [24] was formulated. Looking at the solid magenta line in Figure 7
(left) we can observe that our method is capable of numerically reproducing the conjecture.
On the injectivity of random ReLU layers with non-zero bias, there are no theoretical results
in the literature so far. Hence, our approach yields some novel insights here. For small
variance (Setting (ii)) we observe that the clear boundary from the previous setting blurs
out. For the standard variance in setting (iii) this behavior further intensifies. Note that
an according change of the variances in the distribution of Φ or XN instead gives the same
result. These observations show that the way the bias in a ReLU layer is initialized has a
big influence on its injectivity.

Approximation of the maximal bias (Approach A & B)

In the setting of Lemma 3.17 we have shown that the PBE yields a maximal bias. This
allows us to study the approximation of the sampling-based approach to the maximal bias
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Figure 7: The plots show the injectivity behavior of random ReLU layers for different re-
dundancies (2 ≤ n ≤ 30, n ≤ m ≤ 150). The brightness encodes the proportion of the values
of the given bias α that are smaller than the ones in (α(N) − ρ∗(n,N)) for N = 5 · 105.
For values of one (yellow), the ReLU layer is injective on B. In all settings, the samples in
XN are i.i.d. standard normal and the bias i.i.d. normal with different variances. From left
to right: σ2 = 0, σ2 = 0.1, and σ2 = 1. For σ2 = 0 we observe the clear transition from
non-injective to injective at a redundancy of 6.7 (solid magenta line) that aligns well with
the conjecture from the literature. For larger variance, the transition blurs out quickly and
prevents us from predicting clear statements about injectivity.

αS by the PBE over the iterations. Figure 8 shows this in the example of the Tetrahedron
frame, where the PBE yields that αS = 1√

3
. We plot ∥α(k)−αS∥ as k increases and find that

the approximation is very slow, which emphasizes the superiority of the polytope approach
in this setting.

Remarks on the limitations

Not surprisingly, both algorithms suffer from high dimensionality. For the sampling-based
approach, the asymptotic behavior of the covering radius (38) indicates that it may become
infeasible to reach a good approximation of α♭

K only by increasing the number of samples.
Yet, with some experimenting on the factor, we can use expression (38) to effectively com-
pensate for insufficient sampling in high dimensions. It has particularly high potential when
injectivity is only required on specific data points of interest. In such a situation, the sam-
pling set can be constructed in a custom data-driven way that respects the distribution of
the data.

For the polytope bias estimation, the numerical computation of the convex hull to obtain
the vertex-facet relations becomes infeasible in high dimensions. A possible remedy is to
use dimensionality reduction and do the bias estimation in a lower dimensional space. The
benefits of the method are that injectivity follows deterministically and that it comes with a
lot of intuition an can be studied further using more advanced tools from convex geometry.

With this, we conclude the part of the paper that is concerned with the analysis of the
injectivity of a ReLU layer. The last chapter is dedicated to the reconstruction of the input
from the output of an injective ReLU layer.
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Figure 8: Left: The inscribing polytope for the Tetrahedron frame. Right: The Euclidean
distance of α(k) to the maximal bias of the Tetrahedron frame αS on a log y-scale over 105

iterations. In cases where the inscribing polytope is a simplicial and regular polytope, the
sampling-based bias estimation is sub-optimal, and the polytope approach already gives the
maximal bias.

4 Duality and Reconstruction

If a ReLU layer Cα is injective, there is an inverse mapping that can infer any input from
the output. This extends to the possibility of synthesizing new data that correspond to
arbitrary coefficient vectors in the image of the ReLU layer, or studying the connection of
single weights to the input by perturbing the corresponding output coefficient, thereby being
able to interpret the output values.

In [2], the authors propose to reconstruct the input from its saturated frame coefficients
via a custom-modified version of the frame algorithm [11]. This idea can also be adapted
to ReLU layers. Our main focus lies on another approach, where we propose to construct
explicit perfect reconstruction formulas in the form of locally linear operators.

4.1 ReLU-synthesis

First, we recall the concept of a dual frame, which is closely tied to two operators. The first
one is the synthesis operator which maps the frame coefficients back to the input space as

D : Rm → Rn

(ci)i∈I 7→
∑
i∈I

ci · ϕi.

The application of this operator is realized via the multiplication by the transpose of the
analysis matrix from the left, D = C⊤. The second operator arises as the concatenation of
analysis, followed by synthesis, also known as the frame operator,

S : Rn → Rn

x 7→
∑
i∈I

⟨x, ϕi⟩ · ϕi.

26



In matrix notation, S = DC. The frame operator is positive and self-adjoint, and if Φ is a
frame, it is additionally invertible. Hence, one can write any x ∈ Rn as

x = S−1Sx =
∑
i∈I

⟨x, ϕi⟩ · S−1ϕi. (44)

The collection Φ̃ = (S−1ϕi)i∈I is called the canonical dual frame for Φ. Denoting the synthesis

operator associated with Φ̃ by D̃, then Equation (44) is equivalent to

D̃Cx = x. (45)

In other words, D̃ is a left-inverse of C (given by the pseudo-inverse of C) [10]. This can be
thought of as reconstructing x from its frame coefficients using the canonical dual frame Φ̃.
If Φ is redundant (m > n), there are infinitely many different possibilities of constructing
a left-inverse of C. All of them can be interpreted as the synthesis operator of a (non-
canonical) dual frame. Using this machinery, we can define a reconstruction operator for
Cα analogously to (45). Note, however, that unless Iαx ̸= I for all x ∈ K, there is not one
reconstruction operator for all x ∈ K.

Definition 4.1. The ReLU-synthesis operator associated with the collection Φ = (ϕi)i∈I ⊂
Rn, the bias α ∈ Rm, and the index set J ⊆ I is defined by

Dα
J : Rm → Rn

(ci)i∈I 7→
∑
i∈J

(ci + αi) · ϕi.
(46)

Note that Rm is fixed as domain, the sum, however, runs over the index set J . When using
the ReLU-synthesis operator associated with a dual frame of ΦJ we obtain a reconstruction
formula in the spirit of (45).

Theorem 4.2 (ReLU-dual I). Let Φ be α-rectifying on K for α ∈ Rm and choose x0 ∈ K.

Let Φ̃Iαx0
= (ϕ̃i)i∈Iαx0 be any dual frame for ΦIαx0

, and D̃α
Iαx0

the associated ReLU-synthesis

operator. Then for all x ∈ K such that Iαx0
⊆ Iαx it holds that

D̃α
Iαx0
Cαx = x. (47)

Proof. For x ∈ K with Iαx0
⊆ Iαx , the operator composition in (47) reduces to the usual frame

decomposition with ΦIαx0
,

D̃α
Iαx0
Cαx =

∑
i∈Iαx0

(max(0, ⟨x, ϕi⟩ − αi) + αi) · ϕ̃i

=
∑
i∈Iαx0

⟨x, ϕi⟩ · ϕ̃i = x.
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The condition Iαx0
⊆ Iαx for a reference vector x0 ∈ K means that we may use the same

left-inverse D̃α
Iαx0

for all input elements x that share at least all active elements with ΦIαx0
. By

re-writing the condition on the level of index sets, we can alternatively choose a reference
sub-space via an index set J instead of fixing a reference vector x0.

Corollary 4.3 (ReLU-dual II). Let Φ be α-rectifying on K for α ∈ Rm and choose J ⊆ I
such that ΦJ is a frame. Let Φ̃J be a dual frame for ΦJ and D̃α

J the associated ReLU-synthesis
operator. Then for all x ∈ K with J ⊆ Iαx it holds that

D̃α
JCαx = x.

The approach in the above corollary is particularly useful in the context of the bias es-
timation procedures described in Section 3.2: Given a decomposition of Φ into sub-frames,
either by all different most correlated bases or via the facets of PΦ, we can compute all asso-
ciated left-inverses in advance and use them for reconstruction on demand. More precisely,
for every x ∈ K there is a sub-frame associated with a most correlated bases J∗(x) such that
D̃α

J∗(x) is a left-inverse of Cα. Similarly, if Φ is omnidirectional, then for every x ∈ K there

is a facet F such that D̃α
IF

is a left-inverse of Cα. In both cases, there are only finitely many
such sub-frames. Summarizing, we have the following.

Corollary 4.4. Let Φ be α-rectifying on K. For any x ∈ K there is J ⊆ I such that D̃α
J is

a left-inverse of Cα.

The numerical implementation of the ReLU-synthesis is straightforward when using
canonical duals of the sub-frames ΦJ . A detailed discussion and corresponding pseudo-code
can be found in Appendix C.

Excursion: Reconstruction from PReLU layers

There are various modifications of the ReLU activation function, one of them being the
parametrized ReLU, or PReLU, given by PReLUγ = max(γs, s) with 0 < γ ≤ 1 [18]. As
this is an injective activation function, the associated PReLU layer with weights given by Φ
and any bias α is injective if and only if Φ is a frame. In this case, for any x ∈ K we obtain
a left-inverse of the PReLU layer by

D̃α
γ : Rm → Rn

(ci)i∈I 7→
∑
i∈Iαx

(ci + αi) · ϕ̃i +
∑

i∈I\Iαx

γ−1 (ci + αi) · ϕ̃i, (48)

where Φ̃ = (ϕ̃i)i∈I is any dual frame for Φ.

4.2 The frame algorithm for ReLU layers

The frame algorithm is an iterative scheme that constructs a sequence of vectors in Rn from
given frame coefficients (⟨x, ϕi⟩)i∈I that converges to the input x exponentially fast [11]. This
sequence (yk)

∞
k=0 is defined as y0 = 0 and

yk+1 = yk + λ
∑
i∈I

(
⟨x, ϕi⟩ − ⟨yk, ϕi⟩

)
ϕi (49)
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for k ≥ 0. Letting A,B be the optimal frame bounds for Φ then for 0 < λ < B
2
we have for

all k ≥ 0 that ∥x− yk+1∥ ≤ κλ∥x− yk∥, where κλ = max{|1− λA|, |1− λB|}. Note that the
optimal value for the parameter λ is 2

A+B
. In practice, the frame algorithm is a great tool to

do reconstruction in situations, where computing the exact solution with the canonical dual
(or any dual) frame becomes too expensive.

Clearly, the procedure can be directly applied for the reconstruction of x from the out-
put of a ReLU layer by reducing the sum in (49) to run only over Iαx (the active frame
elements). To see that this is really what we want, note that for all i ∈ Iαx we have
⟨x, ϕi⟩ = ReLU(⟨x, ϕi⟩ − αi) + αi. Therefore, the differences in the sum in (49) over
Iαx are indeed taken between the values of the unbiased output of the ReLU layer and
⟨yk, ϕi⟩. Hence, if our frame Φ is α-rectifying on K then for any x ∈ K we obtain a ReLU-
reconstruction sequence (yk)

∞
k=0 that satisfies ∥x− yk+1∥ ≤ κx,λ∥x− yk∥ for all k ≥ 0, where

κx,λ = max{|1− λAx|, |1− λBx|}, and Ax, Bx are the optimal frame bounds for ΦIαx .
However, we can do better than this. Following the idea in [2], we can extend the frame

algorithm by using the bias values αi for all inactive frame elements as a proxy for the lost
frame coefficients. This gives an algorithm that always outperforms the naive approach in
the setting where we use the optimal parameter for the full frame.

Proposition 4.5 (ReLU frame algorithm). Let Φ be α-rectifying for α ∈ Rm on K ⊆ Rn.
For any x ∈ K, let the ReLU-reconstruction sequence (yk)

∞
k=0 be given as y0 = 0 and

yk+1 = yk + λ
∑
i∈Iαx

(
⟨x, ϕi⟩ − ⟨yk, ϕi⟩

)
ϕi + λ0

∑
i∈Iαyk\I

α
x

(
αi − ⟨yk, ϕi⟩

)
ϕi (50)

for all k ≥ 0. Let λ = 2
A+B

. If λ0 = 0 then ∥x − yk+1∥ ≤ κλ∥x − yk∥ for all k ≥ 0, where

κλ = 1 − Ax
2

A+B
. If λ0 = 2

A+B
and for every k ≥ 0 the optimal lower frame bound for ΦIαx

is strictly less than the optimal frame bound for ΦIαx ∪Iαyk
then there is 0 < εx,yk < 1 such that

∥x− yk+1∥ ≤ (1− εx,yk)κλ∥x− yk∥. (51)

Since the proof is analogous to the one of Theorem 5.2 in [2], we omit it here and refer
to the appendix.

We note that using λ = λ0 = 2
A+B

as parameters in (50) is very natural as we may
not always want to compute the optimal frame bounds for each activated sub-frame, but
instead use a reasonably universal parameter that we only have to compute once. However,
the design of the algorithm leaves it open to also use other parameters. A comprehensive
analysis of which parameters work well is left as an open problem. Note further that the
assumption on the frame bounds for ΦIαx and ΦIαx ∪Iαyk

is very mild. In fact, it is always
fulfilled as long as yk does not lie in the span of one of the eigenvectors of the associated
frame operator. In the worst case where this happens for all k ≥ 0 then εx,yk = 0 and the
extended frame algorithm is as fast as the naive one.

4.3 Stability of the reconstruction

In this section, we revisit a result by [26] on the lower Lipschitz bound of a ReLU layer and
translate it into the language of frame theory as done in [4] and [2]. As a small extension,
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we present a result on the local lower Lipschitz stability. A general revision of the Lipschitz
stability analysis of ReLU layers is left for future work.

Definition 4.6. A frame Φ allows κ-stable α-rectification on K if there is κ > 0 s.t.

∥y − z∥2 ≤ κ · ∥Cαy − Cαz∥2 (52)

holds for all y, z ∈ K.

First of all, we note that if Φ is α-rectifying on K then a frame-type inequality as (4)
holds for Cα. That is, there are constants 0 < Aα ≤ Bα <∞ such that

Aα · ∥x∥2 ≤ ∥Cαx∥2 ≤ Bα · ∥x∥2 (53)

for all x ∈ K. It is easy to see that the largest possibility of choosing the lower bound Aα in
(53) is the smallest lower frame bound among all possible active sub-frames ΦIαx with x ∈ K.
Analogously, the smallest possibility for the upper bound Bα coincides with the largest of
all upper frame bounds. In [26] it was shown that any α-rectifying frame allows (2mA−1

α )-
stable 0-rectification on Rn but not (A−1

α )-stable 0-rectification. It remains an open problem
whether this statement extends to the case of non-zero biases and if the factor m can be
replaced by a constant.

In general, active sub-frames are naturally prone to have a bad lower frame bound, such
that A−1

α may become very large, and the problem becomes globally ill-conditioned. To get
a better understanding of how stable the reconstruction process is for smaller portions of the
data, we shall investigate the lower Lipschitz property locally.

Definition 4.7. For x0 ∈ K, a frame Φ allows κx0-stable α-rectification near x0 if there is
ε > 0 and κx0 = κ(x0) > 0 such that

∥y − z∥2 ≤ κx0 · ∥Cαy − Cαz∥2 (54)

holds for all y, z ∈ B̊ε(x0).

Since locally, a ReLU layer is a linear map we might hope to use A−1
α as a lower bound.

In general, however, we can only guarantee that an α-rectifying frame allows A−1
α -stable

β-rectification for β < α.

Proposition 4.8. Let Φ be α-rectifying on K. For x0 ∈ K let J = J(x0) ⊆ Iαx0
be such that

ΦJ is a frame with lower frame bound AJ . Then Φ allows A−1
J -stable β-rectification near x0

for β < α.

Proof. Let x0 ∈ K. There is J = J(x0) ⊆ Iαx0
such that ΦJ is a frame with frame bounds

0 < AJ ≤ BJ <∞. Analog to the global case, the bi-Lipschitz condition

AJ · ∥y − z∥2 ≤ ∥Cαy − Cαz∥2 ≤ BJ · ∥y − z∥2 (55)

holds for all y, z ∈ K with Iαy , I
α
z ⊇ J . Let β ∈ Rm such that ⟨x0, ϕi⟩ ≥ αi > βi for all i ∈ J .

Hence, there is ε > 0 sufficiently small such that for y, z ∈ B̊ε(x0) we have I
β
y , I

β
z ⊇ J . Since

(55) still holds for Cβ, we get that Φ allows A−1
J -stable β-rectification near x0.

Corollary 4.9. Let Φ be α-rectifying on K, and x0 ∈ K such that ⟨x0, ϕi⟩ > αi for all i ∈ J .
Then Φ allows A−1

J -stable α-rectification near x0.
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4.4 Image of ReLU layers

In the context of our work, it is specifically interesting to know what the image of a ReLU
layers looks like. The impact is two-fold.

(1) To study the injectivity of a ReLU layer that applies to the output of a previous one
it is crucial to know how its image looks like.

(2) Reconstructing samples from the image of a ReLU layer yields a valuable method to
generate new consistent data and understand the effect of their ReLU layer.

We give a partial answer to this question in the following. For bounded K we can use the
upper bound in (53) to find the smallest closed non-negative ball in Rm that contains Cα (K).

Lemma 4.10. Let Φ be α-rectifying on K bounded with M = supx∈K ∥x∥. Letting Bα denote
the largest optimal upper frame bound among all sub-frames ΦIαx with x ∈ K, then

Cα (K) ⊆ B+√
BαM

, (56)

where
√
BαM is the minimal radius.

Proof. By (53), for x ∈ K we have that ∥Cαx∥2 ≤ Bα∥x∥2 ≤ BαM
2. The application of

the ReLU function then corresponds to the projection onto the non-negative part of B√
BαM ,

i.e., B+√
BαM

. Since all estimations are sharp, the claim follows.

As already mentioned, understanding the images of specific sets under ReLU layers is
crucial to understanding how data is processed and passed on to the next layer. The above
lemma is just a small step towards revealing this knowledge which can be used for unravel-
ing certain behaviors of neural networks, and further, enhancing their interpretability and
transparency.

5 Conclusion

This manuscript studies the injectivity of ReLU layers and the exact recovery of input vectors
from their output using frame theory as a tool. Among many basic properties and insights
about ReLU layers on bounded domains, the main theoretical contribution is three different
characterizations of the injectivity of ReLU layers that together provide a complete picture
of its injectivity behavior as a non-linear deterministic operator. A significant portion of the
research focuses on the computation of a maximal bias for a given frame Φ and a domain K,
such that the associated ReLU layer is injective on K. This characterization is particularly
interesting as it allows us to apply the theoretical results in practical applications. We
discuss two different methods to approach this, both of which have distinct advantages and
disadvantages, and provide algorithmic solutions to compute approximations of a maximal
bias in practice. The second part of this work is devoted to the derivation of reconstruction
formulas for injective ReLU layers, based on the concept of duality in frame theory. A brief
local stability analysis of the reconstruction operator completes the discussion.
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In summary, this paper provides a methodology on how to study the channeling of in-
formation in ReLU layers with biases and given input data, made possible by using frame
theory as a tool. The results are designed in a general, yet, accessible way such that they
may stimulate further theoretical research, but are also directly applicable in practice. While
we are pleased to contribute to advancing the understanding of these fundamental and ubiq-
uitous building blocks of neural networks, many critical aspects remain to be explored. A
central question in this context is how information propagates through ReLU networks, so
how can we rigorously characterize the injectivity of the composition of ReLU layers.
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Appendix

A - Remarks on Admissibility and Directed Spanning Sets

With this short comment, we aim to complete the circle between three perspectives to char-
acterize the injectivity of a ReLU layer on Rn. In the work by Bruna et al. [8] the injectivity
of a ReLU layer, or half-rectification operator was linked to an admissibility condition of a
J ⊆ I. There, J is called admissible for Φ and α if⋂

i∈J

{x ∈ Rn : ⟨x, ϕi⟩ > αi} ∩
⋂
i/∈J

{x ∈ Rn : ⟨x, ϕi⟩ < αi} ≠ ∅.

Puthawala et al. in [26] already pointed out that Proposition 2.2 in [8] is not exactly
equivalent to the injectivity of a ReLU layer. However, with a slight modification to⋂

i∈J

{x ∈ Rn : ⟨x, ϕi⟩ ≥ αi} ∩
⋂
i/∈J

{x ∈ Rn : ⟨x, ϕi⟩ < αi} ≠ ∅,

this stands in direct relation to the index sets Iαx , as introduced in Definition 2.2 in the
present manuscript. Indeed, with this modified definition, J is α-admissible for Φ if and
only if there is x ∈ Rn such that J = Iαx . As a consequence, we have that the equivalence
of (i) and (ii) in Corollary 1 here with K = Rn, Proposition 2.2 in [8] with the modified
admissibility condition, and Theorem 2 in [26] are equivalent.

B - Omnidirectionality

We prove the statement about omnidirectionality mentioned in Approach B. of Section 3.2:
By adding a single vector, any non-omnidirectional frame can be made omnidirectional.
Furthermore, we recall how omnidirectionality can be checked numerically as in [5].

Lemma 5.1. Let Φ be a non-omnidirectional frame, then

Φ′ =

(
Φ,−

∑
i∈I ϕi

∥
∑

i∈I ϕi∥

)
is omnidirectional.

Proof. At first, note that if
∑

i∈I ϕi = 0, then Φ is already omnidirectional. Let c1, ..., cm =
1

1+∥
∑

i∈I ϕi∥ and cm+1 =
∥
∑

i∈I ϕi∥
1+∥

∑
i∈I ϕi∥ and ϕm+1 = −

∑
i∈I ϕi

∥
∑

i∈I ϕi∥ , then

m+1∑
i=1

ci · ϕi = 0. (57)

Note that ci > 0 for all i = 1, . . . ,m + 1 and
∑m+1

i=1 ci = 1. Hence, in (57) we wrote

0 as a convex combination of all elements of Φ′. This implies that 0 ∈ P̊Φ′ , hence Φ′ is
omnidirectional.

Regarding the verification of omnidirectionality, let D be the synthesis matrix associated
with Φ, i.e., it consists of the column vectors ϕi for i ∈ I. Then, verifying omnidirec-
tionality is equivalent to the existence of a solution for the convex optimization problem
min ∥Dc∥ subject to c > 0.
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Figure 9: Left: The frame is omnidirectional. Right: The frame is not omnidirectional.

C - Algorithms

We discuss the implementation of the presented algorithmic approaches and provide detailed
pseudo-code. Our Python implementations can be found under https://github.com/danedane-
haider/Alpha-rectifying-frames.

C1. Sampling-based bias estimation. Given a frame Φ, a data domain K, and a
sequence of samples XN ⊂ K, Algorithm 1 demonstrates the sampling-based bias estimation
presented in Theorem 3.13. The samples xk ∈ XN can be chosen to be random samples,
e.g., xk ∼ U(K) for suitable K. Assuming the frame to be full-spark, then J∗(xk) consists
of the indices for the largest n frame coefficients (⟨xk, ϕi⟩)i∈I .

Algorithm 1 Sampling-based approach for approximating α♭
K

Input: Φ, XN , K
initialize (α(0)) = α∆

Φ , k = 0
for z in XN do

compute (⟨z, ϕi⟩)i∈I
get J∗(z)
update (α(k+1))i ← min{⟨z, ϕi⟩, (α(k))i} for all i ∈ J∗(z)
k = k + 1

end for

The for-loop can be replaced with a while-loop conditioned on ∥α(k+steps) − α(k)∥ > ε > 0,
where the parameter steps determines how many updates should be done before checking
the condition. This is very useful to avoid early stopping.

C2. Polytope bias estimation. Given a frame Φ and a bounded domain K. The
vertex-facet relations for PΦ encoded in IFj

can be computed with convex hull algorithms,
e.g., using the property simplices from scipy.spatial.ConvexHull in Python. In the
following, we demonstrate how to compute the biases from Proposition 3.16.
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(i) K = ∂PΦ : Recall that α∆
Φ is given by(

α∆
Φ

)
i
= min

ℓ∈IFj

j:ϕi∈Fj

⟨ϕℓ, ϕi⟩. (58)

Algorithm 2 PBE for ∂PΦ

Input: Φ
compute IFj

for all facets
for j = 1, . . . ,#facets do

βj = mink<ℓ∈IFj
⟨ϕk, ϕℓ⟩

end for
for i = 1, . . . ,m do(

α∆
Φ

)
i
= min

j:i∈IFj

βj

end for

(ii) K = S : Recall that α∆
S is given by(

α∆
S
)
i
= min{ min

y∈F S
j

j:ϕi∈Fj

⟨y, ϕi⟩,
(
α∆
Φ

)
i
}. (59)

First, we show that for fixed i ∈ IFj
,

min
y∈F S

j

j:ϕi∈Fj

⟨y, ϕi⟩ (60)

can be computed using convex linear programs. Letting CIFj
, DIFj

denote the analysis and

synthesis operator associated with ΦIFj
, respectively. We can write any x ∈ F S

j as x =∑
ℓ∈IFj

cℓϕℓ = DIFj
c for some vector c ≥ 0. So for any i ∈ IFj

the solution of (60) is found

by solving the linear program

min
j:ϕi∈Fj

(
CIFj

DIFj
c
)
i

subject to c ≥ 0

∥DIFj
c∥2 = 1.

(61)

If
(
α∆
Φ

)
i
< 0, then the above minimum is negative since

(
α∆
S
)
i
≤
(
α∆
Φ

)
i
< 0. Therefore, we

can replace ∥DIFj
c∥2 = 1 by ∥DIFj

c∥2 ≤ 1 making the problem convex.

(iii) K = Dr,s : Let 0 ≤ s < r and recall that α∆
B is given by(

α∆
B
)
i
= min{s,

(
α∆
S
)
i
}. (62)

One gets the general case by scaling with r−1. The case s = 0 yields a bias estimation for
Br. Since (62) depends on α∆

S in a trivial way, we omit the algorithm.
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Algorithm 3 PBE for S

Input: Φ
compute α∆

Φ

for i = 1, . . . ,m do
if
(
α∆
Φ

)
i
≥ 0 then(

α∆
S
)
i
←
(
α∆
Φ

)
i

else(
α∆
S
)
i
← solution of (61)

end if
end for

(iv) K = B+
r : Let e ∈ Rm be arbitrary and recall that αB+

is given by

(
α∆
B+

)
i
=

{(
α∆
B
)
i

for i ∈ I+

s else,
(63)

where s is arbitrary. The crux here is to compute the index set I+ =
⋃

j∈J+ IFj
defined via

J+ = {j ∈ I : Fj ∩ Rn
+ ̸= ∅}. One way to verify that Fj ∩ Rn

+ ̸= ∅ is to check the feasibility
of the convex optimization problem

min ∥DIFj
c∥2

subject to c ≥ 0 (64)∑
i

ci = 1.

If (64) has a solution for the facet Fj, then there is c ∈ Rn
+ that can be written as a convex

linear combination of the vertices of Fj, hence, Fj ∩ Rn
+ ̸= ∅.

C3. ReLU-duals and reconstruction. For J ⊆ I we denote by CJ the analysis
operator for the collection ΦJ . This corresponds to the |J | × n matrix CJ consisting of the
row vectors ϕi for i ∈ J . Algorithm 4 describes how to build the synthesis matrices for doing
ReLU-synthesis for an index set J from Corollary 4.3.

Algorithm 4 Construction of the matrix for ReLU-synthesis

Input: Φ, J = {i1, . . . , i|J |} ⊆ I such that Ψ = ΦJ is a frame

S−1
J ←

(
(CJ)

⊤CJ

)−1

D̃J ←


| | |

S−1
J ψi1 S−1

J ψi2 · · · S−1
J ψi|J|

| | |
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Note that if we insert columns of zeros in D̃J for all coordinates that have not been activated,
then the resulting matrix would be the synthesis operator associated with a non-canonical
dual frame for Φ in the classical sense. Applying it to an output vector that is restricted to
only the coordinates in J , as presented here, computes the corresponding input by avoiding
unnecessary multiplications with zeros. Finally, we want to perform the actual reconstruc-
tion: Given z = Cαx0 for some x0 ∈ K, we can read off Iαx0

from z directly (under the
assumption that ⟨x0, ϕi⟩ ̸= αi for all i ∈ I). Assuming that we have a suitable list of index
sets of sub-frames (e.g., all most correlated bases of all facet sub-frames), finding those that
are contained in Iαx0

is easy. Choose one, say J . The choice J = Iαx0
is valid too. Then the

matrix D̃J provides reconstruction as follows.

Algorithm 5 Applying the ReLU-synthesis: Reconstruction of x0 from z = Cαx0

Input: Φ, α, z
find J ⊆ Iαx0

such that ΦJ is a frame
z ← z + α (unbias)
restrict to J via ζ ← (zi)i∈J
reconstruct D̃Jζ = x0 (see Algorithm 4)

C4. ReLU frame algorithm. For the sake of completeness, we give a proof of Propo-
sition 4.5 that follows the lines of the one of Theorem 5.2 in [2].

Proof of Proposition 4.5. At first note that applying the (classical) frame algorithm (49)
with ΦIαx and λ = 2

A+B
gives the constant κλ = 1 − Ax

2
A+B

since 2
A+B

< 2
Ax+Bx

. Now, for
every i ∈ Iαyk \ I

α
x we define

γi =
αi − ⟨yk, ϕi⟩
⟨x− yk, ϕi⟩

and note that 0 ≤ γi < 1. It is easy to see that the extended frame algorithm (50) constructs
the same sequence of vectors (yk)

∞
k=0 as applying the (classical) frame algorithm (49) using

the frame Φγ = (ϕi)i∈Iαx ∪ (γ1/2ϕi)i∈Iαyk . Let A′ denote the optimal lower frame bound for

ΦIαx ∪Iαyk
and A′′ the one for Φγ. Then, by assumption that Ax < A′, together with γi < 1, we

have Ax < A′ < A′′ ≤ A. Applying the convergence result for the (classical) frame algorithm
for Φγ gives

∥x− yk+1∥ ≤
(
1− A′′ 2

A+B

)
∥x− yk∥ ≤ (1− εx,yk)

(
1− Ax

2
A+B

)︸ ︷︷ ︸
κλ

∥x− yk∥, (65)

where 0 < εx,yk < 1.
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