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Abstract—This paper introduces ISAC, an invertible and
stable, perceptually-motivated filter bank that is specifically
designed to be integrated into machine learning paradigms.
More precisely, the center frequencies and bandwidths of the
filters are chosen to follow a non-linear, auditory frequency scale,
the filter kernels have user-defined maximum temporal support
and may serve as learnable convolutional kernels, and there
exists a corresponding filter bank such that both form a perfect
reconstruction pair. ISAC provides a powerful and user-friendly
audio front-end suitable for any application, including analysis-
synthesis schemes.

Index Terms—filter bank learning, invertibility, stability, con-
volutional neural networks

I. INTRODUCTION

Using learnable time-frequency filter banks as front-ends for
neural networks can considerably increase the computational
efficiency of a wide range of audio processing tasks [6].
Related approaches range from fully learnable convolutional
layers with 1D kernels [1], [17], [24] to parametrized con-
structions where only the bandwidths and center frequencies
of fixed prototype kernels are learned [22], [28]. Prior work in-
dicates that optimizing learnable filter bank front-ends benefits
from initialization as perceptually-motivated time-frequency
filters, e.g., based on the mel frequency scale [29], and a wide
range of related transforms has been used [12], [23], [27].

Although invertibility and numerical stability of the under-
lying time-frequency filter bank is of limited concern for clas-
sification tasks, it is crucial in analysis-synthesis schemes [4],
[15], [17] to prevent the introduction of errors and ensure that
no needed information is lost. Moreover, it has been found that
stability in the form of a 1-Lipschitz or even Parseval property
significantly increases robustness of the model against noise
and adversarial examples [2], [9], [16], [20].

Perceptually-motivated filter banks that are perfectly invert-
ible and numerically stabile exist [10], [19]. In particular, these
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Fig. 1: Frequency scales of ISAC filter banks for kernel sizes
256, 128, and 64 (top to bottom), based on the ERB scale.
The center frequencies in the dark area lie on a linear scale,
and those in the light area on the ERB scale. The shorter the
kernels, the larger the linear part of the scale becomes.

constructions employ filters with bandwidths matched to the
critical bands [31] of human hearing. However, the frequency-
domain implementation in [10], [19] does not provide control
of the kernel size1, even favoring bandlimited filters, which
necessarily have kernels of infinite length. Yet, control of the
kernel size is a requirement for the efficient integration of
any time-frequency filter bank into learnable machine learning
frameworks to restrict the number of learnable parameters and
employ linear convolution directly on the GPU [6], [7].

We fill this gap by proposing ISAC, a perceptually-
motivated time-frequency filter bank that is invertible and
numerically stable. While ISAC is based on the construction
proposed in [19], we introduce some key changes to enhance
user-friendliness and facilitate an efficient integration into
convolutional machine learning frameworks. On demand, the
kernels of ISAC can be further optimized together with the
remaining model parameters, similar to [29]. Stability and
invertibility can be maintained throughout the whole training

1In the signal processing literature, it is common to refer to the convolution
kernel as impulse response. Here, we prefer the term convolution kernel, which
is widely understood in the mathematics and machine learning communities.



Fig. 2: Individual and total power spectral densities of an ISAC
filter bank with 40 kernels of size T ∗ = 128. The flat total
PSD indicates that the filter bank is well conditioned. The
condition number for a decimation factor of 6 is κ = 1.05.

process by including a regularization term in the learning
objective [2], [9], [15]. Moreover, we can compute structurally
identical approximate duals, i.e., having the same kernel sizes.

The central novelty in ISAC is a user-defined maximal
kernel size. In order to achieve this while maintaining band-
width requirements and a flat total power spectral density
(PSD), we linearize the auditory scale below the frequency
at which the desired kernel size is first achieved. We thus
obtain a set of filters with short kernels that can be used
for time-frequency processing in various applications. Our
implementation supports the seamless integration into machine
learning frameworks and, similar to the idea in [28], it is also
possible to extend the filter bank to a compressed mel-type
spectrogram.

II. FILTER BANKS AND CONVOLUTIONAL LAYERS

Filter banks and (linear) convolutional layers are two names
for the same class of linear, time-invariant (LTI) operators,
possibly combined with decimation. They are well-suited for
processing data that exhibits translation invariance. In practice,
however, the two terms hint at different use cases and implied
restrictions to the considered LTI operator. Time-frequency
transforms are designed as filter banks to match specific time-
frequency characteristics, with kernel sizes typically ranging
from 10 to about 100 ms (corresponding to 48 to 4800
samples for a sampling rate fs = 48 kHz) for most audio
processing tasks. Learned convolutional layers, on the other
hand, usually employ much shorter kernels for processing
audio input. As an example, the default kernel size in the
learnable encoder of ConvTasNet [17] is 16, and wav2vec [1]
as well as WavLM [5] use kernel lengths between 2 and
10 samples to represent the input audio. Reasons for this
comprise the decreased computational demands along with
empirically observed performance improvements associated
with employing shorter kernels [26], [30]. Moreover, long fil-
ters are prone to numerical instabilities [14] and may increase
the risk of overfitting when training data is limited. To capture
dependencies over a longer time range with short kernels,
the models include different dimensionality reduction schemes

Fig. 3: Individual and total power spectral densities of learned
synthesis kernels for the setting of Fig. 2. The reconstruction
error is 6e-6. A regularizing term ensured that the total PSD
stays flat. The condition number is κ = 1.07.

and are usually designed deeper, i.e., multiple convolutional
layers with short kernels are composed. Hence, integrating a
learnable filter bank into this paradigm, necessitates to allow
a customization of the kernel sizes to a definable maximum,
similar to how we set them for time-frequency filter banks in
practice.

In mathematical terms, for a finite discrete real-valued audio
signal x ∈ RL and a filter g ∈ CL (specified by its kernel),
filtering x by g equals finite circular convolution of x and g
(i.e., indices are understood mod L) and decimate the output
by a factor d ≥ 1 (a.k.a. stride), classically written as

(x ∗ g) ↓d [n] =

L−1∑
k=0

x[k]g[dn− k]. (1)

Assuming that a filter has kernel size T ≪ L, by commuta-
tivity of the convolution, we may rewrite the above as

(x ∗ g) ↓d [n] =

T−1∑
k=0

g[k]x[dn− k]. (2)

While (1) is how convolution is formally defined, the reduced
version in (2) is how convolution (with circulant boundary
conditions) is applied in a convolutional layer, where the T
kernel coefficients are the trainable parameters of the network.

III. THE ISAC FILTER BANK CONSTRUCTION

The construction of the ISAC filters closely follows the
one for AUDlets [19]. We recall the main idea: Given a
(non-linear) auditory scale function FS : [0, fs

2 ] → S that
maps positive frequencies (in Hz) to an auditory scale S (in
auditory units), and a function BS : [0, fs

2 ] → R that gives
the associated bandwidths. For the commonly used equivalent
rectangular bandwidth (ERB) auditory scale [13], [18], the
functions are given by

FERB(f) = 9.265 ln

(
1 +

f

228.8455

)
, (3)

and
BERB(f) = 24.7 +

f

9.265
. (4)



If there is no associated bandwidth function (e.g., for the
mel scale), setting BS(f) = (∂(F−1

S )/∂f)(FS(f)) provides
appropriate frequency overlap of the filters.

The AUDlet filters hk are constructed in the Fourier domain
by placing a (symmetric) prototype kernel w at desired center
frequencies fk, k = 1, . . . ,K and impose the bandwidths
BS(fk) (with an optional factor γ > 0) on the chosen auditory
scale S, yielding

ĥk(f) =
√
dk · w

(
f − fk

γ ·BS(fk)

)
. (5)

The center frequencies fk are spaced equidistantly on the
image of [fmin, fmax] under FS and the decimation factors
dk are chosen to yield sufficient overlap at low to moderate
redundancy, aiming at stability and invertibility. If necessary,
a low- and a high-pass filter are added to cover the regions
[0, fmin) and (fmax,

fs
2 ]. The kernels obtained from (5), how-

ever, have full length by default. Using them as kernels for a
convolutional layer is therefore not practicable, especially if
the signal length is very long. Hence, to efficiently employ
such filters in this context, a limitable kernel size is required.

A. Restricted kernel size and a dichotomous auditory scale
For ISAC, we want to transfer the construction in (5) to the

time domain and use a (symmetric) prototype kernel with re-
stricted size. To achieve this, a few modifications are required.
First, since filters with short kernels have full Fourier-domain
support, there is no unique notion of bandwidth that we can
match with BS . We derive a suitable correspondence using a
continuous, compactly supported prototype. Let g ∈ Cc(R) be
supported on [0, 1] with a peak-normalized frequency response
(∥ĝ∥∞ = 1). By specifying a reference bandwidth2 bwR(g) of
g we can determine the appropriate dilation that yields a filter
kernel with bandwidth BS when applied to g:

B̃S,g(f) =
BS(f) · bwR(g)

∥g∥2
. (6)

The final (discrete) ISAC kernel, associated with center fre-
quency f and bandwidth BS(f) is obtained by sampling the
dilated prototype g at sampling rate fs, and discarding all
values that are identically zero. See Eq. (8) in the next section
for the precise expression. We denote the resulting kernel size
by TS,g(f).

As an inherent property of the scaling function, the band-
widths are getting smaller in the lower frequencies, hence,
the kernel sizes naturally become larger. If we want to set a
maximum kernel size Tmax while preserving the bandwidth
requirements, we cannot follow the original scale function
anymore. As a solution, we linearize it where necessary. Let
f∗ ∈ [0, fs

2 ] denote the transition frequency where Tmax =
TS,g(f

∗). We define a modified auditory frequency scale that
is the original scale above f∗ and its linearization at f∗ below
(Fig. 1). For an auditory scale S, the function is given as

F̃S(f
∗; f) =

{
FS(f

∗) + F ′
S(f

∗)(f − f∗) for f ∈ [0, f∗]

FS(f) for f ∈ (f∗, fs
2 ].

2As a default, we use the −3 dB bandwidth of g.

This has the benefit that we can preserve the kernel shape
while re-using the bandwidth at f∗ (and the corresponding
overlap) at all lower frequencies. Accordingly, we use the
following modification of the bandwidth function,

B̃S,g(f
∗; f) =

{
B̃S,g(f

∗) for f ∈ [0, f∗]

B̃S,g(f) for f ∈ (f∗, fs
2 ],

(7)

implying that TS,g(f) = Tmax for every f ∈ [0, f∗]. If we
want to set a minimum kernel size instead, the linearization
can be done analogously for the upper frequency region.

B. The ISAC kernels

Let g ∈ Cc(R) be as before, even symmetric around 1/2
(e.g., a Hann window) and f∗ be the transition frequency for
the maximal kernel size Tmax, i.e., TS,g(f

∗) = Tmax. For
center frequencies fk, k = 1, . . . ,K obtained from equidistant
samples on the image of [0, fs

2 ] under F̃S(f
∗, f), the ISAC

kernels are given by

gk(ℓ) =

√
dk

TS,g(fk)
· g

(
ℓ

TS,g(fk)

)
· exp(−2πifkℓ/L), (8)

for ℓ = 0, . . . , TS,g(fk) − 1. To conform with standard
implementations of convolutional layers, all kernels with
size TS,g(f) < Tmax can be zero-padded to size Tmax

and centered. Recalling that TS,g(fk) is the kernel size that
corresponds to the bandwidth B̃S,g(f

∗; fk) we see that the
above formula is the time domain-version of (5). The L1-
normalization via TS,g(fk)

−1 ensures the peak-normalization
of the frequency response (provided that g is positive).

Due to the division of the center frequencies into an auditory
and a linear part, ISAC can be interpreted as merging an
AUDlet filter bank from [19] with a partial short-time Fourier
transform (STFT) with kernel size Tmax that covers the
low frequency region. Note that the critical bandwidths of
the human auditory sytem are assumed to be approximately
constant at low frequencies and increase proportionally to
frequency only at higher ranges [31]. Hence, the frequency
scale for ISAC yields a reasonable approximation of auditory
scales—provided that Tmax is not too small.

Finally, by including 0 and fs
2 as center frequencies, there

is no need to add extra low- and high-pass filters, and it
allows the user to conveniently choose the number of channels
as a second configuration parameter, further facilitating the
integration into a neural network.

C. Stability

The numerical stability of a filter bank is determined by the
condition number of its frame operator matrix [8]. Let gk, dk
for k = 1, . . . ,K denote the kernels and decimation factors for
a filter bank with K channels. The condition number is defined
as κ = B/A, where A is the largest, and B the smallest
number such that

A · ∥x∥2 ≤
K∑

k=1

∥(x ∗ gk) ↓dk
∥2 ≤ B · ∥x∥2 (9)



kernel size
8† 32 128 512

#
ch

an
ne

ls 16† 1.00 1.17 1.17 1.49
40 1.00 1.04 1.05 1.08
96 1.00 1.04 1.04 1.05

512 1.00 1.04 1.03 1.04

TABLE I: Condition numbers of ISAC filter banks for different
kernel sizes and numbers of channels. Decimation factors vary
between 1 and 6. For the settings with very short filters and
few channels (marked with †) we set γ = 3.

Fig. 4: Left: The compressed representation of a glitchy sound
based on an ISAC filter bank (K = 40, Tmax = 480). Right:
The mel spectrogram with the same settings. The output sizes
match up to a few numbers of time bins.

for every x ∈ RL. Provided A > 0 exists, the filter bank is
called a frame for RL and the existence of a dual synthesis
filter bank with perfect reconstruction is guaranteed. If κ = 1,
the filter bank is said to be a tight frame and possesses con-
venient properties such as Parseval-type energy preservation
and is its own dual filter bank. Figure 2 shows that the total
PSD of the ISAC filterbank (K = 40, Tmax = 128), given by∑K

i=k |ĝk|2 + |ĝk|2, is nearly constant, which - if decimation
is chosen appropriately - provides a good indicator for κ.
However, there are efficient ways to compute κ also exactly
for uniform decimation [3]. Table I lists the condition numbers
of ISAC filter banks for different settings, indicating that they
are almost tight in all practically relevant settings.

If the kernels of the filter bank are further optimized, there
are different ways to maintain a good condition number [9],
[16]. One simple but effective approach [2], [20] is to add
β · (κ− 1) as a regularizing term to the loss function, where
β > 0 is a hyperparameter that controls the influence of the
regularization. If the regularizer kicks in sufficiently, the filter
bank can be simultaneously used as synthesis filter bank.

IV. APPLICATION

A. Compression for mel-type spectrograms

In [11] it was shown that a mel spectrogram can be rewritten
in terms of a filter bank decomposition using adaptive filters
on the mel scale followed by a time-averaging operation after
taking the squared modulus of the filter bank coefficients. In
short-hand notation,

|STFT(x)|2 · Λ = |MEL(x)|2 ∗ ϕ, (10)

where “· Λ” shall describe the averaging to obtain the mel
spectrogram and “∗ ϕ” means channel-wise convolution over
time with MEL being the adaptive filter bank. Although it
is in general not known what the time averaging kernel ϕ is
explicitly, the authors give an example (in the continuous case)
where it can only be a Gaussian when a Gaussian window
is used in the STFT. In the finite discrete setting, it is even
less clear what ϕ should be. A practicable solution that yields
a comparable compression as in the mel spectrogram is to
use a rectangular window that has the same length as the
filters divided by the decimation factor with 50% overlap.
In Figure 4 we show the comparison between the proposed
compression of a mel-based ISAC filter bank (left) and tor-
chaudio’s MelSpectrogram (right), both with 40 channels
and a kernel size of 480. With the proposed implementation,
it is easily possible to make the averaging kernel ϕ learnable,
yielding an adaptive transform, similar to [28].

B. Learn a dual filter bank with the same kernel size

If a filter bank is a frame, there are infinitely many possible
dual frames that provide perfect reconstruction [8]. Finding a
dual frame that exhibits a filter bank structure, yet is not the
canonical dual of the filter bank, is challenging, especially if
additional properties are desired [21] - in our case, restricted
kernel support [25]. With the integration into an automatic
differentiation scheme, we can learn such a synthesis filter
bank by minimizing the reconstruction error employing the
same kernel size. Thereby, we may find a synthesis filter bank
that yields close-to-perfect reconstruction. Since ISAC filter
banks are almost tight, the duals are not “far away”, and we
are able to indeed find good approximate dual synthesis filter
banks with the kernel size (reconstruction error ≈ 6e − 6).
Similar to above, we can promote a flat total PSD via regular-
ization. Such a filter bank is exemplarily depicted in Figure 3.
In other words, we learn a left-inverse of the analysis operator
of the filter bank that is not the Moore-Penrose pseudo inverse
(resulting in the canonical dual filter bank which does not have
the same kernel size).

This provides a setting that can be efficiently integrated into
any neural network-based analysis-synthesis architecture, e.g.,
for speech enhancement [15].

V. CONCLUSION

The paper introduces ISAC, an invertible, stable, and
perceptually-motivated filter bank with customizable kernel
sizes, designed for the needs of modern machine learning.
All transforms are implemented as PyTorch nn.module for
a direct integration into PyTorch’s automatic differentiation
paradigm. With the option is_learnable the kernels can
be set to be learnable parameters of the model. Everything
is included in the PYPI package hybra which can be
conveniently installed using pip install hybra. The
accompanying GitHub project is found under https://github.
com/danedane-haider/HybrA-filterbanks.

https://github.com/danedane-haider/HybrA-filterbanks
https://github.com/danedane-haider/HybrA-filterbanks
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