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Abstract

Using a stride in a convolutional layer inherently introduces aliasing, which
has implications for numerical stability and statistical generalization. While
techniques such as the parametrizations via paraunitary systems have been
used to promote orthogonal convolution and thus ensure Parseval stability,
a general analysis of aliasing and its effects on the stability has not been
done in this context. In this article, we adapt a frame theoretic approach to
describe aliasing in convolutional layers with 1D kernels, leading to practical
estimates for stability bounds and characterizations of Parseval stability, that
are tailored to take short kernel sizes into account. From this, we derive two
computationally very efficient optimization objectives that promote Parseval
stability via systematically suppressing aliasing. Finally, for layers with ran-
dom kernels, we derive closed-form expressions for the expected value and
variance of the terms that describe the aliasing effects, revealing fundamental
insights into the aliasing behavior at initialization.

Keywords: Aliasing, Parseval stability, strided convolution, neural
networks, filterbanks, random filters

1. Introduction

In signal processing, aliasing describes the spectral overlap of different
frequencies when sampling continuous signals, or applying a downsampling
operation to a discrete signal. Fundamentally, aliasing relates to the fact
that the samples of pure frequencies, i.e., linear-phase complex exponen-
tials, are indistinguishable if they differ by a multiple of the sampling rate.
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Besides analog-to-digital conversion, aliasing is a major concern in multi-
rate signal processing [1], where convolution operators, usually termed as fil-
ters, are composed with downsampling (and upsampling) operators to form
multiple-input multiple-output (MIMO) filterbanks. In the machine learning
community, the composition of convolution and downsampling is widely re-
ferred to as strided convolution and forms the fundamental building block of
convolutional neural networks : The linear part of any convolutional layer is
functionally equivalent to a MIMO filterbank.

Filterbanks, in particular invertible (or perfect reconstruction) filterbanks
have been intensively studied since the 1980s, with many authors contribut-
ing to a large corpus of literature. To date, Vaidyanathan’s book [1] prob-
ably remains the most comprehensive reference. His works [2, 3] and works
of Vetterli et al. [4, 5, 6, 7] may serve as representative examples of the
crucial contributions of a large research community to our understanding
of perfect reconstruction (PR) filterbanks. In most of these works, the so-
called polyphase representation was primarily used for the study of the PR
property. In particular, the polyphase representation leads to a convenient
characterization of critically decimated PR filterbanks as exactly those fil-
terbanks with a polyphase representation given by a paraunitary matrix, i.e.,
a matrix-valued function R : C → CM×M which satisfies R(z)R∗(z−1) = IM
for all z ∈ C. If the downsampling factor d is smaller than the number
of channels M , then R(z) ∈ CM×d is a matrix with orthonormal columns.
Alternatively, PR filterbanks can be studied using their alias component ma-
trix, which is likewise a matrix-valued function A : C → CM×d each column of
which is the frequency-domain form of one alias component of the filterbank.
A classic equivalence between the polyphase and alias component matrix, see
[1, Eq. (5.5.8)], shows that, in fact, R(z) is paraunitary, if and only if A(z)
is paraunitary (if d =M), resp. orthonormal.

In the context of neural networks, these results have been used to char-
acterize linear convolutional layers through paraunitary systems [8, 9], and
to establish a relation to the Cayley transform [10], both leading to efficient
parametrization and design strategies. However, a filterbank may be sta-
ble and invertible, even if it is not PR. In that case, the alias component
matrix can be used to explicitly describe the error introduced by aliasing
by means of the derived Walnut representation [11], thereby providing an
intuitive description of a more general class of stable, invertible filterbanks.
This is the perspective that we consider here, using tools (and terminol-
ogy) from frame theory to describe and quantify aliasing in convolutional
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layers with 1D kernels [12]. The core idea is the following. Let Θ be the
operator that applies an undecimated filterbank and F the (unitary) Fourier
transform. Then Ŝ = FΘ∗ΘF∗ is a diagonal operator. After introducing
decimation, this is no longer true, and Ŝ contains additional non-zero side
diagonals, which describe the effect of aliasing on the operator level by means
of frequency correlation among the filters: Ŝ can be decomposed into a sum
of (weighted) translation operators, the Walnut representation of Ŝ. First
described by Walnut [13] for Gabor systems this decomposition extends to
arbitrary filterbanks with uniform [14] and non-uniform decimation [15, 16].
It was further shown that quantifying the terms in the representation allows
us to estimate stability bounds A,B in the sense of

A∥x∥2 ≤
∥∥Θx∥∥2 ≤ B∥x∥2 (1)

for all inputs x. In fact, the existence of 0 < A ≤ B <∞ such that the above
holds characterizes the invertibility and stability of the filterbank. In this
case, we call it a frame. Stability in the sense of (1) plays an important role
in neural networks, where layer transforms with poor bounds A,B can cause
vanishing or exploding gradients, adversely affect training efficiency and gen-
eralization, and create vulnerabilities to adversarial attacks [17, 18, 19]. To
avoid instabilities, either a 1-Lipschitz constraint (B ≤ 1) [20, 21, 22], or
even Parseval stability (A = B = 1) [23, 24, 25] is imposed in the layers. In
our work, we adapt the frame bound estimate from the ℓ2(Z) setting in [11]
to be applicable for convolutional neural networks with stride, and derive
an extension that explicitly takes the kernel sizes of the convolutional layers
into account. From our results we can derive two optimization objectives
that promote tightness (A = B) by systematically suppressing aliasing. Di-
rectly formulated in the Fourier domain, they are computationally as cheap
as the forward pass of a layer. Overall, we provide a new perspective on
the numerical stability of strided convolutional layers through aliasing, and
indicate new approaches towards regularization via aliasing suppression.

The structure of the paper is as following. In Section 2 we prepare the
overall setting for describing single-channel strided convolutional layers and
their stability via filterbanks and g-frames in CL. Section 3 introduces the
Walnut representation for filterbanks in CL and presents estimates for stabil-
ity bounds and characterizing conditions for Parseval stability, only based on
the aliasing terms. We show that the conditions can be used as optimization
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objectives to systematically suppress aliasing and thereby promote Parseval
stability as a direct consequence. Section 4 is dedicated to the expected
value and variance of the aliasing terms for randomly initialized layers. In
Section 5, we describe how all the results in the paper can be applied for
multi-channel layers, non-uniform strides, and dilated convolution. Finally,
Section 6 contains a concluding discussion, open problems, and an outlook.

2. Filterbanks and Generalized Frames

2.1. Basics and notation

Throughout this paper, we consider finite complex-valued signals x ∈ CL

and filters w ∈ CL, both assumed to have periodic extension, i.e., x[n+kL] =
x[n] for any k ∈ N. This provides a setting where the convolution of a signal
with a filter, given by (x∗w)[n] =

∑L−1
ℓ=0 x[ℓ]w[n−ℓ] for n = 0, . . . , L−1 comes

with circular boundary conditions. By time-reversing the filter, denoted by
(Rw)[n] = w[−n] we obtain cross-correlation, (x ⋆ w)[n] = (x ∗ Rw)[n] =∑L−1

ℓ=0 x[ℓ]w[n+ℓ] which is often used instead of convolution. Let the (unitary)
discrete Fourier transform (DFT) of length L be given by

x̂[k] = (Fx)[k] =
1√
L

L−1∑
ℓ=0

x[ℓ]e−2πikℓ/L, (2)

where F is the corresponding DFT matrix. From the circular boundary
conditions we have that x̂ ∗ w = x̂ ⊙ ŵ, where ⊙ denotes the point-wise
product of vectors. For a quadratic matrix H ∈ CL×L, we propose to call
Ĥ = FHF ∗ the matrix Fourier transform of H. We denote the translation
by a samples by (Tax)[n] = x[n − a]. For applying decimation on a vector
by a factor d ≥ 1 we write (x↓d)[n] = x[dn] and upsampling is denoted by
x↑d [n] = x[n/d] if n/d ∈ N and 0 otherwise.

2.2. Strided convolution and filterbanks

Applying convolution, followed by decimation is equivalent to apply con-
volution with a hop size, also known as strided convolution,

(x ∗ w)↓d [n] =
L−1∑
ℓ=0

x[ℓ]w[dn− ℓ]. (3)
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In this context, the decimation factor d is called the stride. We will assume
that L/d ∈ N or, if necessary, extend the signal length to the next multiple
of d, given by d⌈L

d
⌉.

A linear single-channel strided convolutional layer for CL is a filterbank
consisting of filters (wj)

M
j=1 in CL that decompose a signal x ∈ CL into M

channels by strided convolution, i.e., for every j = 1, . . . ,M , the output is
yj = (x ∗ wj)↓d∈ CL/d. We will use the notation

{(wj)Mj=1, ↓d} (4)

to denote such a filterbank. In practice, the filters in a convolutional layer
have a customizable, preferably small, number of trainable parameters, much
smaller than the signal length L (common choices vary between 3 and 32 [26,
27, 28]). We denote this number by LK . In the filterbank paradigm this can
be interpreted as the wj having non-zero entries only at the first LK ≪ L
coordinates. In this spirit, we will refer to the full-length vectors wj ∈ CL as
the filters and to the non-zero part containing the LK (trainable) parameters
as the kernels of wj.

To maintain clarity and conciseness, all results in this work will be for-
mulated for the single-channel case. In Section 5, we discuss how they can
be extended to multi-channel layers, non-uniform strides, and dilated convo-
lution.

2.3. Generalized frames

To study the numerical stability of a filterbank we use a formalism that
treats each of the strided convolutions as a separate linear operator. The
corresponding notion is that of a generalized frame, or g-frame for short [29].

Definition 2.1. A g-frame is a collection (Tj)
M
j=1 of linear operators Tj which

satisfies that there are A,B > 0 such that

A∥x∥2 ≤
M∑
j=1

∥Tjx∥2 ≤ B∥x∥2 (5)

for all x ∈ CL. The constants A,B are called the frame bounds. A g-frame
is said to be tight if A = B and Parseval if A = B = 1.
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For the transform Θ, given by x 7→ (Tjx)
M
j=1 (also called the analysis

operator), the inequality in (5) represents a stability condition which can
be interpreted as relaxed variant of the energy preservation condition for
Parseval stability of orthogonal operators. Moreover, Θ is injective if and
only if (Tj)

M
j=1 is a g-frame. The most important operator in this paper will

be the frame operator, defined by

S = Θ∗Θ : CL → CL (6)

x 7→
M∑
j=1

T ∗
j Tjx, (7)

where T ∗
j is the adjoint operator of Tj in the sense of ⟨Tjx, y⟩CL′ = ⟨x, T ∗

j y⟩CL

for x ∈ CL and y ∈ CL′
. In the case where (Tj)

M
j=1 is a g-frame for CL, then

S is an invertible and self-adjoint L × L matrix whose smallest and largest
eigenvalues are always positive and give the optimal values among all possible
frame bounds A,B in (5). Also in terms of tightness (A = B), the frame
operator is of major importance.

Lemma 2.2. The following are equivalent.

(i) (Tj)
M
j=1 is a tight g-frame for CL.

(ii) There is A > 0 such that ∥Θx∥2 = A∥x∥2 for all x ∈ CL.

(iii) There is A > 0 such that S = Ŝ = A · IL.

For a filterbank {(wj)Mj=1, ↓d} in CL, the elements of the associated g-frame
and their adjoints are given by

Tj : CL → CL/d T ∗
j : CL/d → CL

x 7→ (x ∗ wj)↓d, y 7→ y↑d ∗ Rwj,
(8)

and the frame operator applies as Sx =
∑M

j=1(((x∗wj)↓d)↑d)∗Rwj. In many
applications, it is crucial to use a filterbank that is a tight g-frame. The first
main advantage is that we can perfectly reconstruct any x from its filterbank
coefficients using the same filters. This is reflected by Θ∗Θx = Sx = Ax.
Secondly, energy preservation up to a constant in (ii) provides robustness
against perturbations [30]. In the neural network context, the Parseval case
(A = 1) is equivalent to what is referred to as orthogonal convolution, and
has been leveraged to stabilize the gradient flow, improve training efficiency
and generalization, and increase the robustness against adversarial attacks.
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2.4. Extension to ℓ2(Z)
For proving results that are independent of the signal length L, we will

use that a filterbank in CL is completely determined by its extension to
ℓ2(Z). We use calligraphic symbols for all operators here. Analogously to
the definition of a g-frame for CL, a filterbank with filters gj ∈ ℓ2(Z) and
decimation factor d is a g-frame for ℓ2(Z) if the frame inequalities from Eq. (5)
hold with the corresponding strided convolution and norms in ℓ2(Z). It is a
tight g-frame if A = B, which happens if and only if the associated frame
operator S : ℓ2(Z) → ℓ2(Z) satisfies that S = A · Iℓ2(Z). For g ∈ ℓ2(Z), let the
discrete-time Fourier transform (DTFT) from ℓ2(Z) to L2([0, 1)) be given by

ĝ(ξ) = (Fg)(ξ) =
∑
ℓ∈Z

g[ℓ]e−2πiξℓ. (9)

Analogously, tightness is characterized by Ŝ = FSF∗ = A · IL2([0,1)).

3. Stability Through Aliasing Suppression

The aliasing effects in a filterbank that are introduced due to strided con-
volution can be expressed directly in terms of the matrix Fourier transform
of the associated frame operator, Ŝ. In particular, it can be written as a
sum of terms that describe the frequency correlation among the filters. The
so-called Walnut representation of Ŝ makes this structure visible.

3.1. Better call Walnut

The following proposition is a finite dimensional version of Prop. 4 in [11],
which was originally formulated for filterbanks in ℓ2(Z).

Proposition 3.1 (Walnut representation for filterbanks in CL).
Let {(wj)Mj=1, ↓d} be a filterbank in CL then

Ŝx̂ =
d−1∑
n=0

Gn ⊙TnL
d
x̂, (10)

where

Gn = d−1

M∑
j=1

ŵj ⊙TnL
d
ŵj (11)

are called the aliasing terms of the filterbank.
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Although the proof is essentially the same as the one for [11, Prop. 4], we
include one using the terminology used in this paper.

Proof. For x ∈ CL, we use the following two facts. First, the Fourier trans-
form after down and upsampling is given by

(F ((x↓d)↑d))[k] =
L/d−1∑
n=0

x[nd]e−2πiknd/L. (12)

Second, due to the periodic extension we can interpret x as L-periodic se-
quence, and Poisson’s summation formula gives for every ℓ = 0, . . . , L − 1
that

L/d−1∑
k=0

x[kd] e−2πiℓkd/L = d−1

d−1∑
n=0

x̂[ℓ− nL
d
]. (13)

For every ℓ = 0, . . . , L− 1, we derive

Ŝx̂[ℓ] = FSx[ℓ] = F

(
M∑
j=1

(((x ∗ wj)↓d)↑d) ∗Rwj

)
[ℓ] (14)

=
M∑
j=1

F (((x ∗ wj)↓d)↑d)[ℓ] · F (Rwj)[ℓ] (15)

=
M∑
j=1

L/d−1∑
k=0

(x ∗ wj)[kd]e−2πiℓkd/L · ŵj[ℓ] by (12) (16)

=
M∑
j=1

L/d−1∑
k=0

F ∗(x̂⊙ ŵj)[kd]e
−2πiℓkd/L · ŵj[ℓ] (17)

=
M∑
j=1

d−1

d−1∑
n=0

x̂[ℓ− nL
d
] · ŵj[ℓ− nL

d
] · ŵj[ℓ] by (13). (18)

Exchanging the complex conjugations of the filters and isolating the aliasing
terms yields the final expression.

In other words, Ŝ is a band-diagonal matrix with d bands that describe
the frequency correlation among the filters. The entries of Ŝ are given by

Ŝ[k, ℓ] =

{
G⌊ ℓd

L
⌋[k mod L/d] for k − ℓ ≡ 0 mod L/d

0 otherwise.
(19)
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Figure 1: The matrix Ŝ = FSF ∗ for a filterbank for C40 with M = 4 i.i.d. Gaussian
complex random kernels of size LK = 8 and different strides d = 1, 2, 4.
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Figure 2: The aliasing terms G0, G1, G2, G3 isolated as the side diagonals of Ŝ for the right
matrix (d = 4) from above.

Figure 1 and 2 illustrate the structure of Ŝ for a filterbank with random
kernels and different decimation factors. Setting d = 1, we have that Ŝ =

diag
(∑M

j=1 |ŵj|2
)
= diag (G0). In particular, Gn ≡ 0 for all n > 0. Hence,

the stability of an undecimated filterbank is determined only by the filterbank
response G0. In particular, it is a tight g-frame if and only if the response
is perfectly flat. The Walnut representation allows us to generalize these
statements to d > 1. By bounding the aliasing terms in different ways, we
get frame bound estimates, and see that tightness is equivalent to a perfectly
flat response, together with vanishing aliasing terms.

3.2. Frame bound estimates and tightness characterizations

For the estimates we are using a result that was originally formulated for
filterbanks in ℓ2(Z) in [11]. In this setting, the aliasing terms are continuous
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functions on the torus, Gn ∈ L2([0, 1)), given by

Gn(ξ) =
M∑
j=0

d−1ĝj(ξ)ĝj(ξ − nd−1). (20)

The frame bound estimates are obtained through diagonal dominance.

Proposition 3.2 (G-frame formulation of [11], Prop. 5). If there are 0 <
A ≤ B <∞ with

A ≤ G0(ξ)±
d−1∑
n=1

|Gn(ξ)| ≤ B (21)

for almost all ξ ∈ [0, 1), then the filterbank with filters gj ∈ ℓ2(Z) and deci-
mation factor d is a g-frame for ℓ2(Z) with frame bounds A,B.

In the following theorem, we use Prop. 3.2 to derive statements about
the stability of a filterbank in CL. We use the notation ∥x∥∞ = maxn |x[n]|
and the fact that the average value of any x ∈ CL is given by 1√

L
x̂[0] =

1
L

∑L−1
ℓ=0 x[ℓ].

Theorem 3.3. Let {(wj)Mj=1, ↓d} be a filterbank for CL and let Gn be the
associated aliasing terms. The following holds.

(i) Let

A = min
k

(G0[k]−
d−1∑
n=1

|Gn[k]|) (22)

B = max
k

(G0[k] +
d−1∑
n=1

|Gn[k]|). (23)

If A > 0 then the filterbank is a g-frame for CL and A,B are frame
bounds.

(ii) The filterbank is a tight g-frame for CL if and only if G0 ≡ A for
some A > 0 and Gn ≡ 0 for every n = 1, . . . , d − 1. In particular,
A = 1√

L
Ĝ0[0].
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(iii) If the filterbank is a g-frame and S is the frame operator then

∥S − IL∥ ≤ ∥G0 − 1L∥∞ +
d−1∑
n=1

∥Gn∥∞, (24)

where 1L = (1, . . . , 1) ∈ CL. Moreover, for A,B as in (ii) we have

∥S − 1√
L
Ĝ0[0] · IL∥ ≤ max(|B − 1√

L
Ĝ0[0]|, |A− 1√

L
Ĝ0[0]|). (25)

Proof. The frame bound estimates in (i) follow directly from the ℓ2(Z) version
in Prop. 3.2. Point (ii) follows from the Walnut representation (Prop. 3.1)
and that 1√

L
Ĝ0[0] is the average value of G0. For the first estimate in (iii)

we use the Walnut representation and the triangle inequality to get

∥(S − IL)x∥ = ∥(Ŝ − IL)x̂∥ ≤

(
∥G0 − 1L∥∞ +

d−1∑
n=1

∥Gn∥∞

)
∥x̂∥. (26)

For the second estimate we use that

∥S − 1√
L
Ĝ0[0] · IL∥ = max(|A∗ − 1√

L
Ĝ0[0]|, |B∗ − 1√

L
Ĝ0[0]|), (27)

where A∗, B∗ are the optimal frame bounds of S. Let A,B be as in (ii) then
A ≤ A∗ ≤ B∗ ≤ B holds. Since A ≤ minkG0[k] ≤ 1√

L
Ĝ0[0], replacing A

∗, B∗

by A,B in (27) remains true, and the claim follows.

These results naturally relate aliasing to the stability of a filterbank by
quantifying how reduced aliasing leads to improved frame bounds. In particu-
lar, they show that tightness is achieved precisely when aliasing is completely
absent. However, the results do not take the kernel sizes LK of the filters into
account, which limits their practicality for long or varying signal lengths. In
the following, we present a length-independent version of Theorem 3.3, tai-
lored to the structural constraints of convolutional layers. The conditions
that we derive are only required to hold for the minimal signal length of
L = d⌈2LK−1

d
⌉, and maintain valid for all longer signal lengths.

For the proof, we will use the classic result that shifted Dirichlet kernels
are an orthonormal basis for the space of trigonometric polynomials.
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Lemma 3.4 ([31], Thm. 5.24). Let p be a trigonometric polynomial of degree
≤ N and Dn(t) =

∑
|ℓ|≤n e

2πiℓt denote the n-th Dirichlet kernel. For any
N ′ ≥ N , p can be written as the semi-discrete convolution

p(t) = 1√
2N ′+1

2N ′∑
n=0

p
(

n
2N ′+1

)
DN ′

(
t− n

2N ′+1

)
. (28)

Moreover, the Fourier coefficients of p coincide with the DFT coefficients of
the vector

(
p(0), p

(
1

2N ′+1

)
, . . . , p

(
2N ′

2N ′+1

))
.

The following theorem represents the main result of this paper.

Theorem 3.5. Let {(wj)Mj=1, ↓d} with kernel size LK be a filterbank for CL,

where L = d⌈2LK−1
d

⌉. Let Gn be the associated aliasing terms (of length L).
For all L′ ≥ L the following holds.

(i) Let

A = 2√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1 (29)

B =
d−1∑
n=0

∥Ĝn∥1. (30)

If A > 0 then the filterbank is a g-frame for CL′
and A,B are frame

bounds.

(ii) The filterbank is a tight g-frame for CL′
if and only if G0 ≡ A for

some A > 0 and Gn ≡ 0 for every n = 1, . . . , d − 1. In particular,
A = 1√

L
Ĝ0[0].

(iii) If the filterbank is a g-frame for CL and S the frame operator for CL′

then

∥S − 1√
L
Ĝ0[0] · IL′∥ ≤

∣∣∣∣∣ 1√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1

∣∣∣∣∣ . (31)

Proof. Let us assume that the filters wj have kernel size LK = 2N + 1 for
simplicity. Now let gj ∈ ℓ2(Z) be the filters that coincide with the kernels
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of the wj on [−N,N ]. The ĝj are trigonometric polynomials of degree ≤ N ,
hence, the summands in the associated aliasing terms Gn are all of the form

hj(ξ) = ĝj(ξ) · ĝj(ξ − ω),

with appropriate shifts ω. Since the hj are trigonometric polynomials of
degree ≤ 2N , every Gn is likewise a trigonometric polynomial of degree ≤ 2N .
The core argument for this proof is now provided by Lemma 3.4, giving us
for all L′ ≥ 2N and n = 0, . . . , d− 1, that

Gn(ξ) = 1√
2L′+1

2L′∑
ℓ=0

Gn
(

ℓ
2L′+1

)
DL′

(
ξ − ℓ

2L′+1

)
, (32)

and that the (non-zero) Fourier coefficients of Gn are given by Ĝn. Assuming
that LK = 2N +1, the minimum number of samples needed is L = 4N +1 =
2LK − 1. Taking the divisibility condition for the decimation factors into
account gives us d⌈2LK−1

d
⌉ as smallest admissible signal length. In other

words, the non-zero Fourier coefficients of the aliasing terms for the ℓ2(Z)
extension of the filterbank, hence, also those for CL′

where L′ ≥ L are already
completely determined by Ĝn (of length L).

To prove (i), we approximate the estimates from Lemma 3.2 using that

∥Gn∥L∞([0,1)) ≤ ∥Ĝn∥L1([0,1)) = ∥Ĝn∥1. (33)

For the upper bound, we obtain

sup
ξ∈[0,1)

(
G0(ξ) +

d−1∑
n=1

|Gn(ξ)|

)
= sup

ξ∈[0,1)

(
d−1∑
n=0

|Gn(ξ)|

)
(34)

≤
d−1∑
n=0

∥Gn∥L∞([0,1)) ≤
d−1∑
n=0

∥Ĝn∥1. (35)

For the lower bound, we use that ∥Ĝ0∥1 − 1√
L
Ĝ0[0] bounds the maximal
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deviation in G0. We get

inf
ξ∈[0,1)

(
G0(ξ)−

d−1∑
n=1

|Gn(ξ)|

)
≥ inf

ξ∈[0,1)
(G0(ξ))−

d−1∑
n=1

∥Gn∥L∞([0,1)) (36)

≥ 1√
L
Ĝ0[0]−

(
∥Ĝ0∥1 − 1√

L
Ĝ0[0]

)
−

d−1∑
n=1

∥Ĝn∥1 (37)

= 2√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1. (38)

To prove (ii), we use that

∥Gn∥L2([0,1)) = ∥Ĝn∥ = ∥Gn∥, (39)

where the norms without subscript are Euclidean vector norms. Assuming
that {(wj)Mj=1, ↓d} is tight on CL′

, then the diagonal entries of Ŝ are uniquely
determined by the L samples given by G0, hence, they must all be equal. On
the other hand, by (39), all the Gn, n > 0 must vanish.

For the estimate in (iii) we use that

∥S − 1√
L
Ĝ0[0] · IL′)∥ = max(|A∗ − 1√

L
Ĝ0[0]|, |B∗ − 1√

L
Ĝ0[0]|), (40)

where A∗, B∗ are the optimal frame bounds of S. Let A,B be as in (i) then
A ≤ A∗ ≤ B∗ ≤ B. We obtain

∥S − 1√
L
Ĝ0[0] · IL′)∥ ≤ max

(
1√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1,
d−1∑
n=0

∥Ĝn∥1 − 1√
L
Ĝ0[0]

)

=

∣∣∣∣∣ 1√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1

∣∣∣∣∣
(41)

While the estimates in Thm. 3.5 are looser than the ones in Thm. 3.3
due to the additional estimation step via the 1-norm, we have been able
to detach the frame bounds from the signal length. As a consequence, all
the conditions for tightness can be reduced to this minimal signal length of
essentially twice the kernel size.
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Corollary 3.6. Let {(wj)Mj=1, ↓d} with kernel size LK be a filterbank for CL,

where L = d⌈2LK−1
d

⌉. Let Gn be the associated aliasing terms and S the
frame operator. The following are equivalent.

(i) The filterbank is tight on CL′
for all L′ ≥ L.

(ii) S = Ŝ = 1√
L
Ĝ0[0] · IL

(iii) maxk G0[k]
mink G0[k]

+
∑d−1

n=1 ∥Gn∥∞ = 1

(iv)
∑d−1

n=0 ∥Ĝn∥1 = 1√
L
Ĝ0[0].

While (ii) further specifies the standard tightness condition via the ac-
tual value of the bound, the conditions in (iii) and (iv) fully leverage the
structure of Ŝ and only depend on the aliasing terms Gn. In particular,
(iii) concisely characterizes tightness by aliasing cancellation plus response
equalization (note that also any other vector norm can be considered instead
of ∥Gn∥∞). Condition (iv) further specifies this on the Fourier level of the
aliasing terms, thereby, elegantly describing aliasing cancellation in a simple
formula. Note that since the Gn are objects in the Fourier domain, (iv) ac-
tually becomes a time-domain condition again. Moreover, since it already
involves the tightness bound explicitly, we obtain Parseval stability for free.

3.3. Painless hybrid filterbanks

A further generalization of tightness is when Ŝ is diagonal matrix, but
not necessarily with constant entries. This situation is known as the painless
case [32], and stability obviously only depends on G0 anymore, just as in the
undecimated case. Classically, this is enforced by designing the filters in a
way that they have limited band-pass, defined by the reciprocal decimation
factor [33]. A simple example is to use ideal band-pass filters ψj that satisfy

ψ̂j[k] =

{
1 if k ∈ [aj, aj + L

d
− 1]

0 else,
(42)

for some a ≤ L
d
. To make use of this in a strided convolutional layer we can

combine the kernels with fixed ideal band-pass filters via pair-wise convolu-
tion. Let (ψj)

M
j=1 and (wj)

M
j=1 be filters. The filterbank given by

{(ψj ∗ wj)Mj=1, ↓d}. (43)
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is called a hybrid filterbank [34]. It is easy to see that a hybrid filterbank
inherits the painless property from the ideal band-pass filters.

Proposition 3.7. Let {(ψj ∗ wj)Mj=1, ↓d} be a hybrid filterbank for CL com-

posed of ideal band-pass filters (ψj)
M
j=1 satisfying (42) for a = L

d
and filters

(wj)
M
j=1. The hybrid filterbank is painless and

(i) a g-frame for CL if and only if mink |ŵ⌊ kd
L
⌋[k]| > 0.

(ii) a tight g-frame for CL if and only if |ŵ⌊ kd
L
⌋[k]| = |ŵ⌊ ℓd

L
⌋[ℓ]| ̸= 0 for all

k, ℓ = 0, . . . , L− 1.

An analog statement can be done for a < L
d
, where the condition depends

on the sum of all overlapping ŵj.

Proof. The aliasing terms for a hybrid filterbank are given by

G(ψ,w)
n [k] =

M∑
j=1

d−1ψ̂j[k]ψ̂j[k − nL
d
]ŵj[k]ŵj[k − nL

d
]. (44)

By (42) we have for all j = 1, . . . ,M , k = 0, . . . , L− 1,

ψ̂j[k]ψ̂j[k − nL
d
] = 0. (45)

It follows that G
(ψ,w)
n ≡ 0 for n > 0. In the diagonal term, only the non-

overlapping squared frequency responses remain such that we get

G
(ψ,w)
0 [k] = d−1|ŵ⌊ kd

L
⌋[k]|

2.

The claims follow directly from this.

In other words, we split up the input signal into different frequency regions
and process the resulting sub-band signals further, separately. This principle
is very useful for audio processing and has been already leveraged for different
architectures and applications [34, 35, 36, 37]. In another context, the fixed
decomposition into sub-bands has been shown to stabilize the layer in a
random setting [38], and to be advantageous for making deconvolution more
robust [39].
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3.4. Numerical experiments on suppressing aliasing

Parseval stability in neural networks has been used against exploding
gradients and for enhancing the robustness against noise and adversarial
attacks. To maintain this during training, a sequence of works [24, 23, 40, 41]
has proposed to minimize

LS = ∥S − IL∥, (46)

(or some variant thereof) for all desired layers, alongside a learning objective.
Other possibilities to maintain tightness are to minimize Lκ = B

A
− 1 [42] or

LΘ = 1
2
(∥Θ∥22 − 1

L
∥Θ∥2F ) [43]. By Corollary 3.6, we can promote tightness

also by suppressing aliasing via minimizing

LG =
maxkG0[k]

minkG0[k]
− 1 +

d−1∑
n=1

∥Gn∥ (47)

or

LĜ =

∣∣∣∣∣ 1√
L
Ĝ0[0]−

d−1∑
n=0

∥Ĝn∥1

∣∣∣∣∣ . (48)

The above expressions can be computed very efficiently using fast Fourier
transforms. The computational complexity for LG is O (ML logL+MdL),

and for LĜ it is O ((M + d)L logL+MdL). In comparison, for LS it is

O
(
ML3

d
+ L3

)
.

As a demonstration, we optimize a linear convolutional layer with M
kernels of size LK and stride d to become approximately Parseval stable for
CL, L = d⌈2LK−1

d
⌉ by minimizing the proposed objectives LG (47) and LĜ

(48), and compare it to the baseline LS (46). We additionally consider a
brute-force method based on the construction of the canonical Parseval g-
frame as a reference. Given (Tj)

M
j=1, then (TjS

− 1
2 )Mj=1 is the closest Parseval

g-frame in the Frobenius norm among all Parseval g-frames [44]. Note that

this corresponds to the filterbank {(S− 1
2wj)

M
j=1, ↓d}. Since applying S− 1

2 does
not maintain the kernel size, we project the filters back onto the first LK
components and repeat the process. We call this FIR-tightening.

Definition 3.8 (FIR-tightening). Let {(w(0)
j )Mj=1, ↓d} be a filterbank that forms

a g-frame for CL and PLK
: CL → CL be the projection operator onto the first
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Figure 3: Progress of optimizing randomly initialized strided convolutional layers to be

Parseval stable (250 iterations). We compare the three objectives LG, LĜ, LS , and FIR-
tightening. Top: Condition number B/A. Bottom: Reconstruction error ∥(S − IL)x∥ for
random x, plotted on a log-scale. Left: A common setting for a single-channel layer. Right:
The single-channel pendent that corresponds to a multi-channel layer with C = 32 input
channels, LK = 8, and d = 2. In general, for any setting where the initialization yields a
g-frame, all methods are capable of getting to Parseval stability at machine precision.
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Figure 4: Average computation time for one step on a log scale. We compare different
kernel sizes LK and decimation factors d ≤ LK/2. We set M = 256. Except for d = LK/2,

the aliasing-based methods LG and LĜ are significantly faster than the baseline LS (up
to 32 times) and FIR-tightening.

LK ≤ L coordinates. We define the n-FIR-tightened filterbank {(w(n)
j )Mj=1, ↓d}

by the filters

w
(n)
j = PLK

(
S(n−1)

)− 1
2 w

(n−1)
j , (49)

where S(n−1) is the frame operator for the filterbank {(w(n−1)
j )Mj=1, ↓d}.
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Clearly, the filters w
(n−1)
j have kernels of size LK at any iteration n > 0.

However, we can not guarantee exact Parseval stability due to the projection
step. Yet, in many numerical experiments, we observed that FIR-tightening
reliably converges to approximately Parseval g-frames in few iterations. It
should be noted, however, that this procedure is very invasive due to the pro-
jection, and computationally very expansive as it required a matrix inversion
in every step.

We initialize the kernels as i.i.d. Gaussian random vectors with zero mean
and variance (LKM)−1. We use stochastic gradient decent with learning
rates between 10−2 and 10−4 and add an adaptive regulation by scaling the
objective with (B/A − 1)1/10 in every iteration. In Figure 3, we show the
progress of the conditions numbers B/A and the reconstruction errors ∥(S−
IL)x∥ for random and normalized x over 250 iterations. All methods were
capable of getting to Parseval stability at machine precision (B/A ≈ 1+10−7

and ∥(S − IL)x∥ ≈ 10−7) in any considered scenario.
When looking at the computation time1 that the evaluations of the regu-

larizers take, the aliasing-based methods outperform in all relevant settings,
especially when the stride is small. In Figure 4 we compare the average
speed of computing the different objectives in different settings, and plot the
times on a log scale. In very low parameter settings all the methods are
approximately equally fast. For any increase in M or LK , the aliasing-based
methods take the lead. For the setting M = 256, LK = 64, d = 2 they are
approximately 32 times faster than the baseline.

4. Aliasing at Random Initialization

Initializing neural network weights with random draws from a probability
distribution is a standard practice. In convolutional layers, this means that
the kernels are random vectors. The statistical behavior of aliasing at this
stage can be used to understand how much a feature representation is affected
by aliasing before any learning occurs. This insight can guide the design of
initialization schemes to mitigate destructive aliasing and potentially enhance
learning dynamics.

1The computations were done on the CPU of a MacBook Pro (M4, 14-core CPU).
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4.1. Expected value and variance

We assume that the kernels of the filters wj are i.i.d. random vectors of
length LK and the rest of the L−LK filter entries are zero. For the Gaussian
or uniform i.i.d. case, the distribution looks like

wj[n] ∼

{
N (µ, σ2) or U[a,b] if 0 ≤ n ≤ LK − 1

0 otherwise.
(50)

By the extension with zeros, the wj are not independent random vectors.
The following theorem shows how the expected value and variance of the
aliasing terms of such a filterbank behave. Note that the signal length L
appearing as a factor in all the expression comes from the unitary DFT and
would not pop up with another normalization scheme.

Theorem 4.1. Let {(wj)Mj=1, ↓d} with kernel size LK be a filterbank for CL,
where the wj are distributed as in (50) with zero mean and variance σ2. The
corresponding aliasing terms Gn are complex random vectors satisfying the
following. For any 0 ≤ k ≤ L− 1 the expected value is given by

E [Gn[k]] =
σ2M

Ld

LK−1∑
ℓ=0

e−2πiℓn/d. (51)

In particular, if LK

d
∈ N, then

E [Gn[k]] =

{
σ2MLK

Ld
if n = 0

0 if 1 ≤ n ≤ d− 1.
(52)

The variance is given by

V [Gn[k]] =
σ4M

L2d2

(
sin2(LKπ(

2k
L
− n

d
))

sin2(π(2k
L
− n

d
))

+ L2
K

)
. (53)

Moreover, for any 0 ≤ k ≤ L− 1

σ4ML2
K

L2d2
≤ V [Gn[k]] ≤

2σ4ML2
K

L2d2
. (54)
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Proof. The proof for both expressions goes by expanding the Fourier trans-
forms of ŵj and TnL/dŵj and using the i.i.d. property of the kernels,

Cov (wj[ℓ], wj[ℓ
′]) =

{
σ2δ[ℓ− ℓ′] for 0 ≤ ℓ, ℓ′ ≤ T − 1

0 for T ≤ ℓ, ℓ′ ≤ L− 1.
(55)

The expression for the mean in (51) is given by

E [Gn[k]] =
1

Ld

M∑
j=1

LK−1∑
ℓ,ℓ′=0

e−2πi ℓk
L e2πi

ℓ′(k−nL/d)
L Cov (wj[ℓ], wj[ℓ

′]) (56)

=
σ2M

Ld

LK−1∑
ℓ=0

e−2πiℓn/d. (57)

If LK

d
∈ N, then the exponential terms are roots of unity, which shows (52).

We turn to the variance. Since the terms ŵj[k]ŵj[k − nL
d
] are independent

across j, we can pull out the sum and get that

V [Gn[k]] = d−2

M∑
j=1

E
[∣∣∣ŵj[k]ŵj[k − nL

d
]
∣∣∣2]− ∣∣∣E [ŵj[k]ŵj[k − nL

d
]
]∣∣∣2 . (58)

For the first term, we find that

E
[∣∣∣ŵj[k]ŵj[k − nL

d
]
∣∣∣2] (59)

=
1

L2

LK−1∑
m,m′,ℓ,ℓ′=0

e−2πi
k(m−m′)

L e−2πi
(k−nL/d)(ℓ−ℓ′)

L E [wj[m]wj[ℓ]wj[m
′]wj[ℓ

′]] . (60)

Applying Isserlis’ Theorem [45] and using (55) gives

E [wj[m]wj[ℓ]wj[m
′]wj[ℓ

′]] = E [wj[m]wj[ℓ]] · E [wj[m
′]wj[ℓ

′]] (61)

+ E [wj[m]wj[m
′]] · E [wj[ℓ]wj[ℓ

′]] (62)

+ E [wj[m]wj[ℓ
′]] · E [wj[m

′]wj[ℓ]] (63)

= σ4
(
δ[m− ℓ] · δ[m′ − ℓ′] + δ[m−m′] · δ[ℓ− ℓ′] + δ[m− ℓ′] · δ[m′ − ℓ]

)
.
(64)
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This reduces the quadruple sum in (60) to double sums for three different
configurations of m, ℓ,m′, ℓ′, determined by the covariances. In the first case
(m = ℓ,m′ = ℓ′), the sums simplify to

∑LK−1
m,m′=0 e

−2πi(m−m′)( 2k
L
−n

d
). In the

second case (m = m′, ℓ = ℓ′), all exponents cancel, hence, the sums add up
to L2

K . The third case (m = ℓ′,m′ = ℓ), coincides with the second term in
the variance,

∣∣∣E [ŵj[k]ŵj[k − nL
d
]
]∣∣∣2 = σ4

L2

LK−1∑
ℓ,ℓ′=0

e2πi(ℓ−ℓ
′)n/d. (65)

Hence, the two terms cancels. In total, this gives us

V [Gn[k]] =
σ4M

L2d2

(
LK−1∑
m,m′=0

e−2πi(m−m′)( 2k
L
−n

d
) + L2

K

)
. (66)

We can further simplify the expression by setting τ = m−m′ and recognizing
the Fourier transform of a triangular function at 2k

L
− n

d
which has a known

closed form expression in terms of sin2 [46]. We get

V [Gn[k]] =
σ4M

L2d2

(
LK−1∑

τ=−LK+1

(LK − |τ |)e−2πiτ( 2k
L
−n

d
) + L2

K

)
(67)

=
σ4M

L2d2

(
sin2(LKπ(

2k
L
− n

d
))

sin2(π(2k
L
− n

d
))

+ L2
K

)
. (68)

Finally, the fact that 0 ≤ sin2(LKπt)

sin2(πt)
≤ L2

K for all t ∈ R shows (54).

From the expression of the variance we see that the aliasing terms peak
for 2k

L
− n

d
∈ Z. Given that k takes values from 0 to L− 1 and 0 ≤ n ≤ d− 1,

for every Gn this happens exactly twice, namely at k = nL
2d

and k = nL
2d

+ L
2
.

Figure 5 shows empirical statistics of the Gn for a random d-decimated filter-
bank, together with the theoretical expressions from Theorem 4.1. We see a
behavior that looks like a uniform distribution with mean at one that peaks
around the two mentioned values. Note that the peaks comes from the fact
that the filters arise by applying rectangular windows of size of the kernels
which accumulate energy at their center frequency at zero.
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Figure 5: Empirical and theoretical expected values and variances of the aliasing terms of
a filterbank with M = 40 random filters in C400, kernel size LK = 16, and stride d = 4.
The empirical statistics are computed from drawing the random filterbank 100k times.
The dashed lines represent the theoretical expressions from Thm. 4.1.

In practice, setting the variance for initializing the kernels in dependence
of the total number of parameters in the layer is a common way to balance
the energy of the layer. According to our findings in Thm. 4.1, we should set
σ2 = Ld

MLK
.

Corollary 4.2. Let LK

d
∈ N and σ2 = Ld

MLK
. Then

E[Ŝ] = E[S] = IL (69)

and
M−1 ≤ V [Gn] ≤ 2M−1. (70)

This makes precise that the stability of a random filterbank, distributed
with a variance that is inversely proportional to the number of parameters,
depends merely on the number of channels. Given that the variance bounds
in (70) are very coarse by only considering the two peaks, we find that a ran-
dom filterbank (with appropriate scaling) seems to behave well in reasonable
settings. Even for only M = 8 channels, the variance lies between 0.125 and
0.25. For M = 256, the bounds already become 0.004 and 0.008.

5. Generalizations

In this last section, we describe how more general settings can be con-
verted to the filterbank format {(wj)Mj=1, ↓d} that we assumed throughout
the paper. With these adaption, any result from the previous sections can
be applied directly.
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5.1. Multi-channel layers

Convolutional layers are commonly used to process multiple input chan-
nels simultaneously. Let {(w1,j)

M
j=1, . . . , (wC,j)

M
j=1, ↓d} denote a multi-channel

filterbank for CL with C input channels and M output channels, where
wi,j ∈ CL denotes the filter associated with input channel i and output chan-
nel j. Let xi denote the input from channel i then the transform (analysis
operator) for the multi-channel filterbank Θ : CCL → CML/d is given by

(x1, . . . , xC) 7→

(
C∑
i=1

(xi ∗ wi,j)↓d

)M

j=1

. (71)

By interlacing the filters across all channels, we obtain a filterbank with
equivalent stability properties.

Lemma 5.1. The frame bounds of the filterbank {(w1,j)
M
j=1, . . . , (wC,j)

M
j=1, ↓d}

in CL are given by the ones of the filterbank

{(wj)
M
j=1, ↓Cd} in CCL, (72)

with filters wj ∈ CCL given by

wj[nC + i− 1] = wi,j[n]. (73)

The kernel size is CLK.

Proof. Let x ∈ CCL be given by x[nC + i− 1] = xi[n] then a straightforward
calculation shows that for every j,

C∑
i=1

(xi ∗ wi,j)↓d = (x ∗wj)↓Cd . (74)

The claim follows since interlacing is a unitary operation.

The corresponding g-frame has elements Tj : CCL → CL/d given by

x 7→ (x∗wj)↓Cd and the frame operator is given by S = Θ∗Θ =
∑M

j=1T
∗
jTj.

Tightness means S = A · ICL.

In the multichannel setting, there are situations where we cannot (and
also do not want to) ensure the g-frame property on CCL due to specific

24



architecture designs or dimensionality constraints, i.e., C > M/d. In this
case, the largest and smallest non-zero eigenvalues of S provide the stability
bounds on the range ofΘ. We can express this situation conveniently through
the frame bounds of a filterbank with different filters.

Lemma 5.2. Let {(wi,j)C,Mi=1,j=1, ↓d} be a multi-channel filterbank in CL with
C > M/d. Then the largest and smallest non-zero eigenvalues of S are equal
to the frame bounds of the filterbank

{(vj)dj=1, ↓M} in CML/d, (75)

where the filters vj ∈ CML/d are given by

vj[nM + k − 1] = wk[nCd+ j − 1]. (76)

Proof. Through the described row and column rearrangements one obtains
that the frame operator for the filterbank {(vj)dj=1, ↓M} is unitarily equivalent
to the Gram matrix G = ΘΘ∗ for the filterbank {(wj)

M
j=1, ↓Cd}. Since

Gram matrix and frame operator share all non-zero eigenvalues, the claim
follows.

Tightness in the sense of S̃ = A · IML/d now means that all non-zero
eigenvalues of S are equal to A. We can interpret this as the g-frame for
the original filterbank being tight on the subspace CML/d. For A = 1, this
is equivalent to the row vectors of the matrix representation of Θ being
orthonormal [41].

5.2. Non-uniform stride

By default, all convolutions in a strided convolutional layer use the same
(uniform) stride across the channels. Yet, if a layer architectures requires a
non-uniform stride configuration (as e.g., in [37]), we can instead consider an
equivalent uniform filterbank that contains shifted copies of the filters.

Lemma 5.3. Let {(wj)Mj=1, ↓dj} be a non-uniform filterbank in CL with channel-
specific strides d1, . . . , dM ≥ 1. Then the frame bounds are given by the ones
of the filterbank

{((Tndjwj)
Dj

n=0)
M
j=1, ↓d} in CL,

where d = lcm(d1, . . . , dM) and Dj = d/dj.

Proof. The statement follows from the ℓ2(Z) case for which a proof can be
found in [11].
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5.3. Dilated convolution

For a ≥ 1, dilated convolution of x and w in CL is defined by

(x ∗a w)[n] =
L−1∑
ℓ=0

x[aℓ]w[n− ℓ]. (77)

This is equivalent to dilate the kernel of the filter by a directly, which can
be realized by upsampling the filter and cropping the result back to length
L. We denote the cropping by w:L.

Lemma 5.4. Let {(wj)Mj=1, ↓d,∧a} denote a filterbank in CL that applies
dilated convolution with a ≤ L/LK. The frame bounds are given by the ones
of the filterbank

{((wj↑a):L)Mj=1, ↓d} in CL, (78)

with kernel sizes aLK.

Proof. It is easy to see that

(x ∗a w)↓d [n] =
L−1∑
ℓ=0

x[aℓ]w[dn− ℓ] = (x ∗ (w↑a):L)↓d [n]. (79)

Assuming a ≤ L/LK guarantees that we only crop zeros. Hence, the frame
bounds are not affected.

6. Discussion and Outlook

This works shows that generalized frames offer a natural formalism to
study aliasing in strided convolutional layers and link it to their invertibility
and stability. We can elegantly formulate perfect reconstruction conditions,
which only depend on the kernel size and the stride, and get tightness char-
acterization with an extension to the painless case via sub-band restriction.
With this we can design computationally efficient optimization objectives
that are nicely interpretable by means of aliasing suppression. Using the
aliasing-based objectives as regularizers to promote Parseval stability in a
larger-scale application did not fit into the scope of this work and remains
to be tested. In the same context, it is interesting to ask how stability is
affected by a learning update in general, and how regularization can intrin-
sically bias the updates towards a local minimum which yields at least a
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comparable performance but with stability guarantees. By a standard frame
perturbation result (see e.g. [47]), the worst-case scenario is determined by
the upper frame bound of the update filterbank with filters uj given by
uj[n] = Φ

(
(wj)

M
j=1

)
[j, n], where Φ represents the update rule (e.g., the gra-

dients).

Lemma 6.1. Let {(wj)Mj=1, ↓d} be a filterbank with frame bounds A,B and
R the optimal upper frame bound for {(uj)Mj=1, ↓d}. If γ ·R < A then {(wj −
γ · uj)Mj=1, ↓d} is a g-frame with frame bounds (

√
A− γ

√
R)2, (

√
B + γ

√
R)2.

While this means that after each weight update, the frame bounds might
worsen by γ

√
R, the interesting question is if and how regularization can

avoid these worst-case scenarios.

In the context of random initialization, this work provides the fundamen-
tal statistical properties of the aliasing terms, but leaves some open questions
on how to apply them. First, how can we obtain the statistics for the frame
bounds from the statistics of the aliasing terms? While it seems to be a nat-
ural application, we can not use norm properties of random vectors without
knowing their distribution. Such an analysis has to be done in a more com-
prehensive follow-up work that focuses on randomness. Second, we observed
that the peaky behavior of the variance around two entries comes from the
accumulation of energy at the center frequency of the rectangular windows
that we apply. An approach to better distribute the peaks in the variance
could be to apply smooth window functions with different frequencies.
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[20] Louis Béthune, Deep learning with Lipschitz constraints, Ph.D. thesis,
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