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Abstract

This paper provides algebraic and analytic, as well as numerical arguments
why and how double preconditioning of the Gabor frame operator yields
an e�cient method to compute approximate dual (respectively tight) Gabor
atoms for a given time-frequency lattice. We extend the definition of the ap-
proach to the continuous setting, making use of the so-called Banach Gelfand
Triple, based on the Segal algebra

�
S0(Rd), k · kS0

�
and show the continuous

dependency of the double preconditioning operators on their parameters.
The generalization allows to investigate the influence of the order of the two
main single preconditioners (diagonal and convolutional). In the applied sec-
tion we demonstrate the quality of double preconditioning over all possible
lattices and adapt the method to approximate the canonical tight Gabor
window, which yields a significant generalization of the FAB-method used
in OFDM-applications. Finally, we demonstrate that our approach provides
a way to e�ciently compute approximate dual families for Gabor families
which arise from a slowly varying pattern instead of a regular lattice.
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1. Introduction

Time-frequency analysis (TFA) constitutes one of the corner-stones of
modern signal processing and is at the same time an essential part of the
area of mathematics called harmonic analysis. What the fields of engineer-
ing and mathematics thereby connects, is the use of the Short-Time Fourier
Transform (STFT), one of the central objects of both areas. Gabor systems
arise here in a natural way as they are used for atomic decomposition of sig-
nals, respectively for the reconstruction of functions (or distribution) from a
sampled STFT. Compared to wavelet theory the TFA setting has the advan-
tage that it can be applied naturally in the context of finite Abelian groups,
i.e. one can formulate the underlying theory for the finite-dimensional case in
a mathematically rigorous way, providing a solid basis for implementations.
In this sense, having the right tools for the e�cient handling of Gabor-related
operators is crucial to understand both, the finite discrete and the continuous
setting. This is the main motivation for our work.

Generally speaking, preconditioning is an important approach in the nu-
merical treatment of operators, because it allows to improve the computa-
tional properties of the given problem. Instead of solving Ox = y, one solves
(PO) x = Py, where P can be e�ciently calculated and PO has “nicer”
numerical properties, for example, a better condition number. A typical ap-
proach is done as starting point for the Jacobi algorithm, where the inverse
of the diagonal of a matrix is used as a preconditioning matrix, called diag-
onal preconditioning. This preconditioner is the first main ingredient in this
paper.

Going one step further, one can also solve (UOU⇤)Ux = Uy for a unitary
U and gets a di↵erent preconditioning operator. This was done in [4] by
combining diagonal preconditioning with the Fourier Transform F as the
unitary transformation to introduce a circulant preconditioning method. The
implementation of the Fourier transform by the FFT is very e�cient, so that
such an approach is fruitful for improving numerical e�ciency. This is the
second main ingredient.

The consecutive application of the diagonal and (then) the circulant pre-
conditioning approach was introduced in the same paper as the so-called
double preconditioning method to compute approximate dual Gabor atoms at
very low computational costs, which can be used to compute the true canon-
ical dual (up to precision) in an iterative approach. Numerical experiments
demonstrate that this approach often works impressively well.
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In the present manuscript, we revisit this approach by providing further
numerical insights and - in particular - working on the related theory, settling
algebraic and functional analytic background questions which, in turn, paves
the way for further applications and generalizations.

Before we start o↵, let us motivate the intentions of this paper by collect-
ing several basic facts concerning regular Gabor frames, i.e. Gabor frames
which are generated by applying time-frequency shifts from a lattice ⇤ in
phase space to some Gabor atom g.

1.1. Gabor Motivation

It is a widely accepted viewpoint that the determination of a dual frame
for a given Gabor frame is a computationally expensive task. A lot of research
has been investigated in this aspect [49, 52] and even though computer power
(and parallelization schemes) has evolved tremendously, it is still a hard
task for multi-dimensional signals or high sampling rates. Given a lattice
⇤ � Rd ⇥ bRd and some Gabor atom g, a dual is needed for two main tasks:
Either to reconstruct a signal from the samples of the STFT with window g
at the lattice points - the frame theoretic aspect. Or, using the elements of
the Gabor family as building blocks, to represent a given signal as a Gabor
series (the atomic decomposition viewpoint). Both tasks require, for good
numerical properties, a modest amount of redundancy, meaning a certain
quasi-geometric density of ⇤ in Rd ⇥ bRd. We denote this by red(⇤). For
some applications, it is also quite useful to have tight Gabor frames (with
low redundancy) because such a tight system has an important conceptual
bonus, as one can use the same atoms for analysis and synthesis, while still
achieving perfect reconstruction (up to a constant). So, one does not have
to distinguish between the system used in the atomic decomposition or for
the samples of the STFT. For example, when cutting out signal parts in the
time-frequency domain, e.g. by multipliers, the interpretation of the results
is much more straightforward.

Although the regular case - i.e. the existence of a lattice - allows us
to make use of a variety of structural properties of the corresponding frame
operator, it is still of interest to have alternative methods, especially in prepa-
ration for the multi-dimensional (including non-separable cases, i.e. lattices
which are not of the form ⇤ = ⇤1 ⇥ ⇤2 with ⇤1 � G and ⇤2 � bG) or for a
so-called quasi-regular situation, which behaves locally similarly to a lattice,
but which do not allow to benefit from the algebraic structure arising in the
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case of sets ⇤ which have the structure (such as the Janssen representation
of Sg,⇤) of a discrete (co-compact) subgroup of Rd ⇥ bRd.

In short, the motivation for the current paper is the observation that the
potentially computationally expensive task of computing the exact canonical
dual or tight Gabor atom can be replaced by the very simple procedure of
double preconditioning, which allows computing approximate dual or tight
Gabor atoms “on the fly”. Therefore, the concrete goal is to formulate the
analytic background to this approach.

1.2. Paper Outline

The paper is structured as follows. In Section 2 we settle the preliminaries
and notation. Section 3 introduces the basic ideas of the double precondition-
ing approach, followed by its formulation in the continuous setting, where we
provide analytic formulas. Continuity questions are clarified in Section 5 and
Section 4 builds the bridge to the spreading domain of operators. Then we
consider double preconditioning in the context of Banach Gelfand Triples in
Section 6. The last two sections provide further numerical insights, regarding
the influence of the redundancy on the quality of preconditioning approaches
and applications: finding an (approximate) tight window, improving the con-
vergence of an iterative approach, and using it as a fast reconstruction option
for varying lattices.

2. Preliminaries and Notation

In this paper, we will investigate both, the infinite-dimensional case,
i.e. f 2 L

2(Rd), and the finite-dimensional case f 2 Cn, where f =
(f [0], f [1], . . . , f [n� 1])T is always considered with indices to be modulo n,
i.e. f [k + ln] = f [k]. In fact, we view finite vectors as signals defined on Zn,
the cyclic group of order n, or as members of `2(Zn). We will use the unitary
version of the DFT (discrete Fourier transform), i.e. f 7! fft(f)/

p
n.

To apply an operator O on the Fourier side we write OF = F � O � F⇤,
where F denotes the (unitary) Fourier transform, i.e. OF describes O in the
Fourier basis. As usual, we write Ff = bf and so FOf = OF bf .

For a given m⇥n matrix M (describing a linear mapping in the standard
basis) one can write the same action in the Fourier basis via MF = {FnMF ⇤

n
,

where (Fn)k,l = (1/
p
n) · e�(2⇡ikl/n) is the DFT/FFT matrix, with 0  k, l 

n� 1.
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Note that, for the matrix M , one could also use the two-dimensional
Fourier transform F2, where F2 (M) = FmMFn. And so the connection,
described in terms of matrix entries, reads F2 (M) [k, l] = MF [k,�l].

2.1. Gabor Analysis

In this article, we will work with the triple (g, a, b), where g 2 L
2(Rd) is

the given Gabor atom (or window) and the constants a, b > 0 describe the
time-frequency lattice ⇤ = aZd ⇥ bZd, having lattice elements � = (ak, b`),
with k, ` 2 Zd. By T⌧g(t) = g(t� ⌧) we denote the translation or time-shift
of g by ⌧ and by M⇠g = g(t)e2⇡i⇠·t the modulation or frequency-shift of g by
⇠. The family (g� = M`bTkag = ⇡(�)g)

�=(ka,`b)2⇤ of all time-frequency-shifted
versions of g, is called a regular Gabor system. To shorten the notation we
will write (g,⇤) for such a collection of functions in L

2(Rd). This notation
is also convenient for more general lattices in Rd ⇥ bRd. It allows a stable
reconstruction formula (or atomic decomposition with control of coe�cients)
if and only if the Gabor frame operator Sg,⇤, given by

Sg,⇤(f) =
X

�2⇤

hf, g�ig� (1)

is invertible. In fact, this is satisfied if and only if the Gabor system consti-
tutes a frame [8], i.e. there exist constants 0 < A  B < 1, such that

Akfk22 = Ahf, fi 
X

�2⇤

|hf, g�i|2  Bkfk22 8 f 2 L
2(Rd) (2)

holds. In this case, the (canonical) dual frame is the Gabor frame generated
from the (canonical) dual atom eg which is given by eg = S

�1
g,⇤g, respectively the

unique solution to the linear equation Sg,⇤eg = g. This is a special instance
where one can decompose any f 2 L

2(Rd) as

f = Sg,eg,⇤f :=
X

�2⇤

hf, g�ieg� =
X

�2⇤

hf, eg�ig� =: Seg,g,⇤f. (3)

In fact, the frame operator of the Gabor frame generated from the dual Gabor
atom, (g̃�)�2⇤ is just the inverse of the original Gabor frame operator, i.e.

S
�1
g,⇤(f) = Seg,⇤(f) =

X

�2⇤

hf, g̃�ig̃�. (4)
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Definition 2.1. A function � 2 L
2(Rd) is called an approximate dual Gabor

atom for a given pair (g,⇤) if the mixed Gabor operator

Sg,�,⇤(f) =
X

�2⇤

hf, g�i�� (5)

is close to the identity operator, i.e., if

|kSg,�,⇤ � Id|kL2
!L2  ⇢ < 1. (6)

For nice Gabor atoms g, the approximate duality is the better the smaller
the parameter ⇢ > 0 is. Details and related concepts can be found in [43, 13,
12] or Def. 3.1. in [64].

One usually considers (for good reasons) an atom g used for a Gabor
frame (g�)�2⇤ to be “good” when it is in Feichtinger’s Algebra, i.e.

g 2 S0(Rd) = {f 2 L
2(Rd) : Vgf 2 L1(R2d)}, (7)

where
Vgf(t,!) = hf, ⇡(t,!)giL2 , (t,!) 2 R2 (8)

is the Short-Time Fourier Transform (STFT) of f with respect to the win-
dow g. Among others, this implies that any Gabor family arising from a
general lattice ⇤ � Rd ⇥ bRd defines a Bessel family for the Hilbert space�
L

2(Rd), k · k2
�
. Moreover, according to well-established, non-trivial results,

we know that the canonical dual Gabor atom eg also belongs to S0(Rd) (by
[44]) and that eg = S

�1
g,⇤(g) depends continuously on the lattice parame-

ters describing ⇤ (according to [34]). For these reasons, we will focus on
atoms g 2 S0(Rd) and consider the operator norms also with respect to�
S0(Rd), k · kS0

�
, which dominates the operator norm on

�
L

2(Rd), k · k2
�
.

Except for the critical case (a = b = 1), a Gabor frame is non-orthogonal
and redundant. Still, the Gabor frame operator has a lot of structure due
to its invariance properties, and above all due to the fact that for any two
functions g, � 2 L

2(Rd) one has

Sg,�,⇤ � ⇡(�) = ⇡(�) � Sg,�,⇤, �2⇤, (9)

which is (together with the positive definiteness inherent to all frames) the
basis for a variety of fast numerical algorithms to compute the (potentially
non-canonical) dual Gabor atom numerically. The benefits of the regular
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case, i.e. of the lattice structure of ⇤ becomes visible by two particular rep-
resentations.

The Walnut representation (see [43], Chap.7) describes Sg,�,⇤ as strongly
convergent series of translations combined with multiplications:

Sg,�,⇤ =
X

l2Zd

Gl · Tlb�1 , (10)

with Gl describing the multiplication operator by the a-periodic function

Gl(x) = b�d
X

k2Zd

g(x� lb�1 � ak) �(x� ak), (11)

the so-called correlation function for the pair (g, �). This representation goes
back to [62] and has been explored numerically for a number of algorithms,
as described in the early papers by S. Qiu ([55, 56, 54] to name a few). See
also [14].

For our description also the spreading representation is relevant. It de-
scribes operators as (limits of) infinite series of time-frequency shifts [41].
In this sense, Equation (9) can be explained equivalently by the fact that
the spreading representation of the Gabor frame operator is supported by
another lattice, called the adjoint lattice ⇤� = b�1Zd ⇥ a�1Zd, which can be
characterized as the set of all time-frequency shifts commuting with those of
⇤. This allows deriving the so-called Janssen representation of the Gabor
frame operator, i.e. a description of Sg,�,⇤ as sum of TF-shifts from ⇤�. In
fact, the coe�cients can be obtained explicitly (up to a factor depending on
the redundancy of ⇤) as samples of Vg� - the STFT of � with respect to the
window g - over ⇤� (see [35], Thm. 3.5.11.iii):

Sg,�,⇤ = red(⇤)
X

��2⇤�

Vg�(�
�)⇡(��). (12)

Although the Walnut representation was the original motivation for the pre-
conditioning techniques, we will have a closer look at the Janssen represen-
tation in Section 4 to draw new functional analytic connections, yet, both
perspectives play a role for the arguments provided. Therefore, we give an
explicit description of the situation in the finite discrete case next.

2.1.1. The Matrix Viewpoint of the Gabor Frame Operator
An extensive introduction to discrete Gabor Analysis can be found in

[60, 59]. In the finite discrete setting, we can only use lattice parameters
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a, b 2 Z such that n

a
and n

b
are integers. In matrix terminology, the (mixed)

Gabor frame operator is then given by a n⇥ n matrix Sg,�,⇤[m, `] where we
use the indexing m, l = 0, ..., n� 1.

The two mentioned representations of Sg,�,⇤ above can be transferred to
this finite setting as follows. Using Walnut’s representation, one finds the
entries of the Gabor frame operator matrix to be given by

Sg,�,⇤[m, `] =

(
n

b

Pn
a�1
k=0 g[m� ak] �[l � ak] for m� l ⌘ 0 mod n

b

0 else.
(13)

In other words, Sg,�,⇤ is a matrix that contains at most b non-zero side-
diagonals (understood in a cyclic way), which are regularly spaced at distance
n/b. Each of these side diagonals is a-periodic.

The Janssen representation can be used to fully describe Sg,�,⇤ by a unique
a⇥ b matrix J with entries given by

J [m, l] =
n

a · b · Vg�
h
l
n

b
,m

n

a

i
. (14)

The rows of this (compact version) of the Janssen representation corresponds
then to the (finite) Fourier transforms of the a-periodic functions found in
the b side-diagonals.

2.1.2. Algebraic Prelude
Following the spirit of [63] or [58] the natural domain for Gabor Analysis

is the realm of locally compact Abelian groups G, because it is based on time
and frequency shifts and the use of the Short-Time Fourier Transform. An
important subclass of such groups is, of course, the family of finite Abelian
groups. As the dual group bG of such a group is also a finite Abelian group
of the same cardinality, the associated finite phase space is the finite Abelian
group G⇥ bG. In contrast to the general case, and even compared to the usual
setting, namely G = Rd, the corresponding spaces (of functions or operators)
are all finite dimensional and thus the issue of convergence of series or the
boundedness of linear mappings can be ignored. Nevertheless, one can speak
of well or poorly-conditioned problems.

Although every finite Abelian group is isomorphic to a product of cyclic
groups of prime power order it is more elegant to provide a coordinate-free
description of the situation from the perspective of abstract harmonic anal-
ysis as in [36]. We will follow the notations of that paper (also compatible
with the standard notation of [43]) here.
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The approach has the advantage that it avoids the use of multiple indices,
even if one deals in practice with multi-dimensional objects, such as pixel
images, which can be viewed as functions on G = ZM ⇥ ZN with a four-
dimensional phase space and corresponding complicated lattices there. The
same principle works for “matrices”. The vector spaces can be treated by
the methods of linear algebra and allow - at least in principle - an exact
realization using the tools of matrix analysis. Instead of frames in infinite
dimensional Hilbert spaces (such as

�
L

2(G), k · k2
�
) one may consider finite

sets which form a generating family for the finite-dimensional vector space
under consideration. The approach to this viewpoint can be found in [38].

2.1.3. Banach Gelfand Triples
Let us now collect some functional analytic facts for this paper. It is quite

natural to choose the Gabor atom g in S0(Rd). According to the important
results in [32] (for the rational case) and [44] for the general case it can be
assured, that in this case the dual window also belongs to S0(Rd), and the

same is true for the canonical tight window h = S
�1/2
g,⇤ g. These results are

based on the principle of spectral invariance, which guarantees that for a
Gabor frame operator of the form Sg,⇤ the invertibility on

�
L

2(Rd), k · k2
�

combined with the boundedness on
�
S0(Rd), k · kS0

�
automatically implies the

invertibility as an operator on
�
S0(Rd), k · kS0

�
, and hence (by duality) also on

(S0

0(Rd), k · kS0
0
). Such a result is by no means obvious, but unfortunately, this

approach does not provide quantitative estimates for the inverse operators.
Over the years it has turned out to be convenient to describe the situation

with the help of the Banach Gelfand Triple (S0,L
2,S0

0)(Rd) (going back to
the chapters [41] and [35] in the book [40]). Comprehensive sources for this
topic are [15] and [6]. Let us recall the definition:

Definition 2.2. Let B be a Banach, and H a Hilbert space. The triple
(B,H,B0) forms a Banach Gelfand Triple if there are continuous embeddings

B ,! H ,! B
0 (15)

which are dense in the first case and w⇤-dense for the second.

The prototypical Banach Gelfand triple is (`1, `2, `1), with (B, k · kB) =�
`
1, k · k1

�
as the basis, while the one interesting for us is (S0,L

2,S0

0)(Rd).
One of the advantages of the specific setting of S0 is the fact that it can
be defined over any LCA (locally compact Abelian) group [48], so it makes
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sense to use not only
�
S0(Rd), k · kS0

�
, but also S0(Rd ⇥ bRd) (viewing phase

space as a LCA group).
In general, Banach Gelfand Triples constitute a category (see [1], [50]),

where these triples form the objects. Even more important is the choice of
the morphism in a category, i.e. the structure-preserving mappings between
the objects in a category, called BGT-morphism.

Definition 2.3. A linear mapping T between a given pair of Banach Gelfand
Triples (B1,H1,B

0

1) and (B2,H2,B
0

2) is called a BGT-morphism if

1. T maps (B1, k · k(1)) to (B2, k · k(2)),
2. The mapping T extends in a unique fashion to a bounded linear mapping

from (H1, k · kH1) to (H2, k · kH2);

3. T extends furthermore to a norm and w⇤-continuous mapping between
the dual spaces, i.e. from

�
B

0

1, k · kB0
1

�
to
�
B

0

2, k · kB0
2

�
.

The norm of T as a BGT-mapping is the maximum over the three (operator)
norms, i.e. |kT |k(B,H,B0) = max{|kT |kB!B , |kT |kH!H , |kT |kB0

!B0 }.

Correspondingly, the terms BGT-isomorphism (a morphism with the
property that there is an inverse mapping, which is also a BGT-morphism)
and the term BGT-automorphism are arising in a natural way. An isomor-
phism is called unitary if it is unitary at the Hilbert space level.

2.1.4. The Feichtinger BGTs
In most cases of interest the Hilbert space in the middle of a BGT is

obtained by complex interpolation of Banach spaces between (B, k · kB) and
(B0, k · kB0) and thus the w⇤-dense embedding of (B, k · kB) into (B0, k · kB0)
is the crucial assumption. Thus, the norm of a self-adjoint or unitary op-
erator is just the norm on the inner Banach space (see [35] or [15]), i.e.
|kT |k(B,H,B0) = |kT |kB in such a case. In particular, this is the situation we
encounter for T = Sg,⇤, with B = S0(Rd). Let us formulate two well-known
facts in the context of such Feichtinger BGTs:

1. The Fourier transform establishes an automorphism of (S0,L
2,S0

0)(Rd),
which is uniquely determined by the fact that it maps pure frequencies
�s to the corresponding Dirac measures �s;

2. The classical Fourier transform for periodic functions can be viewed
as a Banach Gelfand Triple isomorphism between the BGT (A,H,A0)
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and (`1, `2, `1)(Z), i.e. the Gelfand triple consisting of Wiener’s al-
gebra

�
A(T), k · kA

�
, the Lebesgue space

�
L

2(T), k · k2
�
and the dual

(A0, k · kA0), also known as space of pseudo-measures on the torus, and
the corresponding sequence spaces over Z. Since one has S0(T) = A(T)
due to the compactness of T and S0(Z) = `

1(Z) due to the discreteness
this is a first example of the general statement that FG defines a unitary

BGT-isomorphism between
�
S0(G), k · kS0(G)

�
and

⇣
S0( bG), k · kS0( bG)

⌘
.

By the main result of [44] we know that for Gabor atoms g 2 S0(Rd) the
Gabor frame operator defines not just an automorphism at the level of the
Hilbert space (by definition) but extends to an automorphism of the Banach
Gelfand Triple. For our purpose, we shall formulate this in the context of
the Banach Gelfand Triple.

Theorem 2.4. Given g 2 S0(Rd), such that (g,⇤) generates a Gabor frame
for L

2(Rd). Then Sg,⇤ defines a BGT automorphism for (S0,L
2,S0

0)(Rd)
with the inverse being the Gabor frame operator arising from eg.

We note, however, that the abstract results established in this way, while
far-reaching and exhausting for the case of the Gaussian or for totally pos-
itive functions (see [45]), do not provide bounds on the BGT-norms of the
resulting isomorphism, respectively do not provide bounds for the inverse
frame operator on

�
S0(Rd), k · kS0

�
(or equivalently, on the S0-norm of eg). It

is one of the functional analytic goals of this paper to provide some estimates
on this norm, making use of the idea of preconditioning, see Section 6.

For this, we shall collect a few more known results. The first one is
the formulation of the so-called Janssen criterion, i.e. the verification of
su�cient conditions for a Gabor family generated from a pair (g,⇤). It
is based on the fact, that the Janssen representation of the Gabor frame
operator (see (12)) is an absolutely convergent sum of operators. For the
description of this characterization, we refer to [41] (Thm.3.5.11) also known
as the Fundamental Identity for Gabor Analysis (see [37]).

Combining general arguments for the inverse in Banach algebras with the
Janssen criterion allows the following reformulation of [61, Theorem 4.11.]:

Theorem 2.5. Given g 2 S0(Rd), with kgk2 = 1 and ⇤� Rd ⇥ bRd. If

X

��2⇤�

|Vgg(�
�)| < 1 + �, (16)
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for some � < 1, then the frame operator Sg,⇤ is invertible, and the operator
norm on

�
S0(Rd), k · kS0

�
(hence the BGT norm) of S�1

g,⇤ is controlled by

|kSeg,⇤|kS0!S0 = |kS�1
g,⇤|kS0!S0 <

1

1� �
. (17)

This criterion was first formulated in [61, Theorem 4.11.]. It can be
used as well to control the operator norm of S

�1
g,⇤ on any of the spaces�

L
p(Rd), k · kp

�
(even uniformly with respect to p 2 [1,1]), and even for

other Banach space of functions or distributions which allow isometric ac-
tion of the TF-shifts ⇡(�).

To finish the preliminary part of the paper, let us point to the key
argument of the claim above, i.e. an estimate of the di↵erence between
IdS0 = ⇡(0, 0) = Vgg(0, 0)⇡(0, 0) and red(⇤) · Sg,⇤ (see Section 6).

3. The Double Preconditioning Method

The double preconditioning method was introduced in [4] as a way to
compute approximate dual Gabor frames in a computationally very e�cient
way, and use that for an iterative approach to calculate the canonical dual.
The idea is based on the fact that for relatively short windows the Gabor
frame operator is reduced to a multiplication operator (called the painless
case [17, 43, 3]). Therefore one may expect that in a more general situation
with only good decay of the Gabor atom such a multiplication operator will
be the dominant contribution to the Gabor frame operator. In fact, one has
diagonal dominance and consequently invertibility of the Gabor frame ma-
trix in the corresponding discrete case. On the other hand, it is also clear,
that any (even a re-scaled) version of the Gabor frame operator cannot be
close to the identity operator if the diagonal part shows strong oscillations.
Hence getting rid of this problem by applying the inverse of the diagonal
part of the Gabor frame operator is supposed to improve the situation sig-
nificantly. This is the motivation for the first preconditioner, called diagonal
preconditioner, denoted by Dg,⇤ := Dg,⇤

�1. Originally, the preconditioners
were introduced in a finite-dimensional setting, such that Dg,⇤ is the diago-
nal matrix consisting of the main diagonal of the Gabor frame matrix Sg,⇤.
We choose the notation in a way so that we can reuse it to introduce the
continuous operator versions of the preconditioners conveniently later on.

By analogy, a good concentration of the Gabor atom in the frequency
domain, i.e. smoothness of the Gabor atom has the same e↵ect, but in the
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Fourier transform description of the Gabor frame operator. Taken back to
the time side, this is a situation where the side-diagonals in the Walnut
representation of the Gabor frame operator are not negligible, but, by as-
sumption, rather smooth periodic functions with small oscillations. Hence,
they are well approximated by a convolution operator which can easily be
inverted as well. This motivates us to perform the diagonal preconditioner
on the Fourier side, which defines the circulant respectively convolutional
preconditioner. In analogy to the diagonal case, we will use the symbol Cg,⇤,
i.e. for (Cg,⇤)�1, the inverse of the circulant operator which approximates
Sg,⇤.

Remark 3.1. We denote the best approximation of Sg,⇤ by a diagonal or a
circulant matrix in the Frobenius norm by D (Sg,⇤) and C (Sg,⇤), respectively.
One can obtain C (Sg,⇤) as (best) approximation by a diagonal matrix on
the Fourier side as introduced above. We would like to emphasize that the ob-
tained convolution matrix can be constructed also directly without the Fourier
representation and arises by taking the means of each side-diagonal of Sg,⇤,
see Appendix 1.

Remark 3.2. The idea to apply circulant preconditioners in order to speed
up the iterative solvers for linear equations as such is not new and has been
described in the literature many times. Let us just give two typical references,
to [10] and [51].

Both preconditioners are good candidates to approximate the inverse of
the Gabor frame operator (for “nice” settings). In combination they are used
to build the proposed double preconditioner Pg,⇤ = P(Sg,⇤) as

Pg,⇤ = C
�
D (Sg,⇤)

�1 · Sg,⇤

��1
D (Sg,⇤)

�1 , (18)

which can be re-written to be a concatenation of operators

Pg,⇤ = CA �Dg,⇤. (19)

By CA = C (Dg,⇤ � Sg,⇤)
�1 we denote a circulant preconditioner, which takes

a diagonal preconditioner already into account. An approximate dual of g
w.r.t. the lattice ⇤ = aZd ⇥ bZd can then be computed as

eg(ap) = Pg,⇤g. (20)

14



Note that this generates an approximate dual frame in the sense of [14]. Of
course, the closeness of eg(ap) to eg (in

�
S0(Rd), k · kS0

�
) is intimately related

to the closeness of Pg0,⇤ to S
�1
g,⇤ (as operator on

�
S0(Rd), k · kS0

�
and hence

on
�
L

2(Rd), k · k2
�
). For more see Section 5.

3.1. Preconditioning in the Continuous Setting

As mentioned, double preconditioning was introduced in [4] only for the
finite-dimensional matrix setting. There, mostly numerical experiments were
done showing that the approach works impressively well in many cases. In
this section, we extend the method to the continuous setting using the Wal-
nut representation of the Gabor frame operator, allowing explicit analytical
formulas for the preconditioning operators and finding them to be conve-
nient multiplication operators. The obtained formulas can also be used in
the discrete setting to compute the approximate canonical dual Gabor atoms
directly without explicitly constructing the full preconditioning matrices for
fixed parameters.

For the diagonal preconditioner, note that the main diagonal of Sg,⇤ is
given by the correlation function Gl in the Walnut representation of Sg,⇤ (see
Equation (10)) for l = 0, yielding an a-periodized version of |g|2,

G0(t) = b�d
X

k2Zd

|g(t� ak)|2. (21)

For the circulant preconditioning approach we use the identity S
F

g,⇤ = Sbg,⇤0

where ⇤0 = bZ⇥aZ and find the main diagonal of SF

g,⇤ analogously, denoting
the correlation term on the Fourier side as

GF

0 (s) = a�d
X

`2Zd

|bg(s� b`)|2. (22)

In this sense, the two single preconditioning operators can be written directly
as multiplication operators in the continuous setting,

Dg,⇤f(t) = D
�1
g,a
f(t) = G�1

0 (t) · f(t) (23)

Cg,⇤f(s) = C
�1
g,b
f(s) =

⇥
F⇤
�
(GF

0 )
�1
�⇤

(s) · f(s). (24)

In order to establish the double preconditioning operator we have to discuss
it for the mixed version of the Gabor frame operators Sg,� . The resulting
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diagonal version is then given by

Dg,�,⇤f(t) = D (Sg,�,⇤) f(t) =

"
b�d

X

k2Zd

g(t� ak)�(t� ak)

#
· f(t) (25)

and the circulant mixed version by

C
F

g,�,⇤ = F �Dĝ,�̂,⇤ � F⇤ = Dĝ,�̂,⇤0 . (26)

In this way, the mixed circulant preconditioner results in a convolution op-
erator defined by the transfer function C

F

g,�,⇤, i.e. we obtain a multiplication
operator on the Fourier side,

C
F

g,�,⇤
bf(s) =

"
a�d

X

`2Zd

bg(s� b`)b�(s� a`)

#
· bf(s). (27)

In order to construct the double preconditioner we have to consider the main
diagonal of D

�1
g,�,⇤Sg,�,⇤ on the Fourier side. In fact, this can be written

as the mixed frame operator Sg,�D,⇤ with �D = Dg,⇤� being the diagonal
preconditioned atom. This works because by (25) D�1

g,�,⇤ is a multiplication
operator and, therefore, commutes with all modulations. It is also a-periodic
and therefore commutes with translations Tka for all k. At a more abstract
level, one could argue with the Janssen representation (12) that

Dg,�,⇤ = red(⇤)
X

(0,⌫)2⇤�

\(� · g)(⌫)M⌫ (28)

and that it commutes therefore with all time-frequency shifts in ⇤.
Therefore, we set Cg,�D,⇤ = C

�1
g,�D,⇤, describing the circulant precondi-

tioner, which takes the previous diagonal preconditioning already into ac-
count. Then, using (25) and (27) we find the double preconditioning operator
to be the composition

Pg,�,⇤ = Cg,�D,⇤ �Dg,�,⇤. (29)

For g = �, the Walnut representation on the Fourier side has a correlation
function for l = 0, given by

GF ,D
0 (s) = a�d

X

`2Zd

ĝ(s� b`)cgD(s� b`). (30)
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Using this we can write the double preconditioning operator Pg,⇤ as the
multiplication operator with a double factor

Pg,⇤ f = F⇤
1

GF ,D
0

· F 1

G0
· f. (31)

Doing the computations in a finite setting according to these formulas has
two advantages. On the one hand, one gets rid of the necessary divisibility
condition - i.e. that one has to enforce a and b being divisors of n - and
can construct good approximate duals by choosing the lattice parameters
more freely. See Section 8.3 for a direct application. On the other hand,
the underlying computations can be done in a very fast manner, even out-
performing the block processing scheme originally proposed in [4]. By using
the block processing scheme [53] building the Gabor frame operators takes
bn/a multiplications, in contrast to Equation (25), which takes only order
n/a multiplications.

3.2. Almost Commutation of Double Preconditioning

Experimental evidence from many simulations indicates that the order of
applying diagonal and circulant preconditioning does not matter so much in
most settings [4]. This is obvious for the case of commutative TF-lattices
since then both preconditioners have a Janssen representation with non-zero
terms using only elements of ⇤�, but this optimal situation occurs only rarely.
For generic situations a more detailed investigation of the level of closeness
(for lattices that are close to commutative ones and for “nice” Gabor atoms)
still has to be done.

What the observations from numerous numerical experiments indicate is
the following: If the first preconditioner is working well, then the second
would not spoil the positive e↵ect of the first one. In some cases, it may even
significantly contribute to and improve the situation. On the other hand, if
the more e�cient one is applied as the second one it appears that doing the
less e�cient first does not deteriorate the overall e↵ect. All these claims are
expected to be valid for Gabor atoms g which are well concentrated in the
TF-sense.

Using the correlation functions we can verify a certain form of commu-
tativity for explicit conditions on the window functions g, �, and the lattice
⇤. For the alternative double preconditioner, which arises by first doing
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convolutional preconditioning and then diagonal preconditioning we have:

Rg,⇤ = D (Cg,⇤ � Sg,⇤)
�1 � Cg,⇤ (32)

analogously to (31), and thus

Rg,⇤f =
1

GC
0

· F⇤
1

GF

0

· Ff, (33)

where
GC

0(t) = b�d
X

k2Zd

g(t� ak) gC(t� ak) (34)

is the correlation function for Sg,gC,⇤ at l = 0 and gC = Cg,⇤g.
We will show the commutation result for the more general mixed version,

i.e. using two windows. Using (25) and (27) we get

Rg,�,⇤ = Dg,�̃C,⇤ � Cg,�,⇤, (35)

analogously to (29).

Theorem 3.3. If g, � are even symmetric windows, then

RF

g,�,⇤ = Pĝ,�̂,⇤0 . (36)

Proof. Noting that d(�C) = (�̂)D we obtain

RF

g,�,⇤ = DF

g,�̃C,⇤ � CF

g,�,⇤ = DF

g,�̃C,⇤ �Dĝ,�̂,⇤0 . (37)

Further, by (26) we have that

DF

g,�,⇤ = ICǧ,�̌,⇤0I, (38)

where I is the reflection operator, i.e. (If) (t) = f(�t). Indeed, for any
operator O which has a Janssen representation as in (12) we have that IOI =
O, as �⇤� = ⇤�. Hence

RF

g,�,⇤ = CIĝ,I�̂D,⇤0 �Dĝ,�̂,⇤0 . (39)

Assuming even windows, clearly I ĝ = ĝ holds, but also I�̂D = �̂D since

Ib�D = IDg,�,⇤� = (IDg,�,⇤I) I� = Dg,�,⇤I�. (40)
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Therefore,
RF

g,�,⇤ = Pĝ,�̂,⇤0 , (41)

and, moreover, also
Rg,�,⇤ = PF

ĝ,�̂,⇤0 . (42)

Corollary 3.4. In the particular case of g = � being the standard Gaussian
and assuming lattice parameters such that ⇤ = ⇤0, one has

Rg,�,⇤ = PF

g,�,⇤. (43)

In other words, interchanging the order of circulant and diagonal precon-
ditioning in the double preconditioning operator corresponds to switching to
the Fourier side of the operator. Hence, in this case, one has

Rg,�,⇤g = \Pg,�,⇤g. (44)

Note that the converse of the corollary is not true. As an example take two
di↵erent windows such that their Gabor systems result in Parseval frames
(for the same lattice), then all the involved preconditioning operators are the
identity, but the windows do not coincide.

4. General Subgroup Preconditioning in the Spreading Domain

Let us go back to the finite-dimensional, yet, abstract group-motivated
setting described at the beginning, where the Gabor frame operator lives in
Mn,n, the vector space of all complex-valued n⇥ n-matrices, which can be
identified with the vector space of all functions on the finite phase-space is
Zn ⇥cZn.

The Janssen representation shows - even in the most general situation -
that the Gabor frame operator Sg,⇤ derived from a Gabor atom g 2 S0(Rd)

is an absolutely convergent sum of TF-shifts from ⇤� � Rd ⇥ bRd. The con-
nection to the idea of (double) preconditioning can be described as follows:
The lattice points of ⇤� on the y-axis represent all pure modulations. Hence,
the main diagonal of the Gabor frame operator arises by taking exactly those
elements, see (28). Indeed, all the other elements involve some translation
(by shifts of multiples of a) and thus do not contribute to the main diagonal.
Therefore, the diagonal preconditioner is directly related to the y-axis on the
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Figure 1: Left: Position of the Janssen coe�cients on ⇤� corresponding to the diagonal
preconditioner. Right: Positions corresponding to the convolutional preconditioner.

adjoint lattice. As the adjoint lattice is given by b�1Zd ⇥ a�1Zd, the Fourier
transform of the main diagonal is concentrated on a lattice of the form a�1Zd.
As a consequence the main diagonal of Sg,a,b has to be an a-periodic function,
in fact, we know it is an a-periodization of |g|2. A similar statement can be
given concerning the preconditioner, which arises from the lattice points of
⇤� on the x-axis. Figure 1 illustrates this perspective by showing the posi-
tions of the corresponding Janssen coe�cients within the lattice ⇤�.

Let us provide a more abstract perspective of the situation (for the general
setting). We consider Mn,n of all the complex-valued n⇥ n-matrices with
the usual scalar product on Cn

2
. This is also known as the Frobenius product

and corresponds to the scalar product defined in the Hilbert-Schmidt sense
using the trace operator. Let us give a summary of known, respectively easily
shown results:

Lemma 4.1. Given a subgroup ⇤ of the finite phase space Zn ⇥cZn, with
adjoint1 group ⇤� (see [35], 3.5.3) one has:

1. The subalgebra M⇤ ⇢ Mn,n, consisting of all n⇥ n-matrices which

1It is just the commutator group in the TF-sense.
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commute with the TF-shifts ⇡(⇤) := {⇡(�),�2⇤}, is exactly the space
of all matrices that have a spreading support contained in ⇤�.

2. The (rescaled) TF-shift operators ⇡(�)/
p
n,� 2 Zn ⇥cZn form an or-

thonormal basis for Mn,n.
Consequently, the Hilbert-Schmidt (or Frobenius) norm is equivalent to
the norm of its coe�cients in `

2(⇤�). The corresponding expansion
of a given operator T acting on `

2(Zn), i.e. the n⇥ n-matrix which
describes (the coe�cients of) the representation of T with respect to
this ONB is called the spreading representation of T , denoted by ⌘(T ).

3. Let H be a subgroup of Zn ⇥cZn. Then the linear span of ⇡(H) forms a
Banach algebra if the coe�cients are endowed with the norm of `1(H).
At the coe�cient level, the composition of operators can be described in
terms of twisted convolutions, i.e.

(M\⇤N)[k, l] =
X

p

X

q

M [p, q] ·N [k � p, l � q] · e
2⇡i(k�p)a·qb

n .

4. If H is a subgroup of Zn ⇥cZn with the property that the TF-shifts
arising from H commute2, then twisted convolution in `

1(H) is reduced
to ordinary convolution, and thus the inversion of an operator in such
a Banach algebra can be obtained by means of the pointwise division of
the corresponding Fourier transform for H.

Proof. 1.) The proof can be taken from the continuous setting, see e.g. [43,
Lemma 7.4.1], or for the general version see [35].

2.) This can be found e.g. in [36].
3.) Given Oi =

P
hi2H

⌘(Oi)(hi)⇡(hi) for i = 1, 2. Then let h = (th, ⌫h) and

O1O2 =
X

h12H

⌘(O1)(h1)⇡(h1)
X

h22H

⌘(O2)(h2)⇡(h2)

=
X

h12H

X

h22H

⌘(O1)(h1)⌘(O2)(h2)e
2⇡ith1

⌫h2
n ⇡(h1 + h2)

=
X

h2H

 
X

h02H

⌘(O1)(h� h0)⌘(O2)(h
0)e

2⇡i(th�th0)⌫h0
n

!
⇡(h).

4.) Obvious by above.

2We then call H a TF-commutative lattice in phase space.
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Up to now, we have focused very much on Gabor frames generated by a
triple (g, a, b), where the time and the frequency axis play a particular role.
Their orthogonal lattices, i.e. the one of aZd is 1/aZd in the frequency direc-
tion, and 1/bZd in the time direction give us insight into a group theoretical
interpretation of the two pre-conditioners, which will now be taken to a more
general level. This will allow using the same idea in the context of general
lattices ⇤ � Rd ⇥ bRd. The obvious proof of the next lemma is left to the
reader:

Lemma 4.2. Let H be a subgroup of the TF-lattice ⇤�, with adjoint group
H�. Then the set of all matrices whose spreading symbol is supported on H
is a subalgebra (with respect to twisted convolution), and will be denoted by
MH . It corresponds to the subset of Mn,n of all n⇥ n-matrices with the
property that they are invariant under conjugation with ⇡(h�), with h� 2 H�,
i.e. satisfying

⇡(h�) �M = M � ⇡(h�). (45)

Then the restriction of the spreading symbol of a given operator T 2 M⇤

to H provides the best approximation (in the Hilbert-Schmidt sense) of T
by elements from the sub-algebra MH . The best approximation of a given
matrix M by an element from MH can thus be described easily at the level of
the spreading symbols: it is simply the pointwise multiplication with indicator
function of H (resp. the Dirac comb over H).

For the particular case of diagonal and circulant preconditioners, the cor-
responding subgroups are H = {0}⇥ 1

a
Zn and H = 1

b
Zn ⇥ {0}.

Now, one may describe the general idea of (simple, double or other)
preconditioning of the Gabor frame operator by choosing the most relevant,
and perhaps most simple and most e�cient commutative subgroup of ⇤�,
and use the inverse of the best approximation of the Gabor frame operator
on this subgroup as a preconditioner.

Ideally, such an approach should fulfill the following properties:

1. It should be easy to build the best approximation B of S;
2. It should be easy to compute the inverse B�1 of the approximation;
3. The product B�1S should belong to the same Banach algebra of ma-

trices (i.e. to those having a spreading support inside of ⇤�).

The first two items are conditions one would need to have good precondi-
tioning in the general case, while the third one would give a way to determine
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the concatenation of those operators in the particular structure, which allows
investigation as in Section 3.2.

Of course, there are many potential subgroups for this approach. Of par-
ticular interest are subgroups of ⇤� with the property that the arising set of
TF-shifts ⇡(⇤�) = {⇡(��) |�� 2 ⇤�} forms a commutative group of operators.
By Lemma 4.1 the composition of operators at the level of their spreading
function is then equivalent to the ordinary convolution of functions over
G⇥ bG and thus, can be inverted easily using Fourier methods. Therefore,
condition (2) is fulfilled. In the non-commutative case, which occurs e.g. for
small (non-integer) redundancies, the situation requires dealing with the in-
version of the twisted convolution, which is a much harder problem, see [21].
Since twisted convolution introduces some form of non-commutativity of the
involved operators it is natural to look out for TF-commutative subgroups
which can be used to constitute cheap and (as it turns out) e↵ective precon-
ditioners. The subgroups that were chosen for the double preconditioning
approach fulfill exactly this condition.

5. Continuous Dependence on the Parameters

It is a well-established result that the dual atom of a Gabor frame gen-
erated by an atom in S0(Rd) depends continuously on both the atom and
the lattice ⇤ (see [33]). Therefore, it is natural to ask whether the same is
true for the approximate dual Gabor atom generated by the double precon-
ditioning method. This is not only a question of academic interest but also
of practical relevance, e.g. for the discussion in Section 8.3. As a motivation
for our expectation (a proof will be given below), Figure 2 shows the result
of a numerical experiment, which indicates the continuous dependence of
the shapes of the preconditioned windows from the lattice parameters. The
length of the signal is n = 480 and the lattice parameters, both in time and
frequency change from 15 to 18. Note that some of these parameters are not
divisors of n, so the use of the representation of the double preconditioner as
multiplication operator derived in Section 5 gets crucial.

We refer to [24, 41, 48] for general results on S0(Rd). We also use stan-
dard results concerning Wiener amalgam spaces W (B, `q), see e.g. [26],
[46] or [43]. Loosely speaking they allow controlling the global behaviour
(summability) of the local norm expressed using (B, k · kB).

We will start our theoretical investigation with the following general re-
sult. Note that only the S0-norm allows estimating Bessel bounds for Gabor
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Figure 2: Upper row: Evolution of g̃
(ap) for increasing a from 15 to 18. Lower row:

Evolution of g̃(ap) for increasing b from 15 to 18.

families, uniformly over certain ranges of parameters. Hence, even if we
would be only interested in operators between Hilbert spaces, the use of
S0-estimates appears to be crucial (see [41], Section 3.3.3).

Proposition 5.1. Let ↵ = 1/a and h0 2 S0(Rd) with bh0(0) = 1 and
X

k2Zd

|bh0(↵0k)| = 1 + �0 < 2 for some ↵0 > 0, �0 > 0.

Choose any � 2 (�0, 1) some "0 > 0 and �0 > 0, any h 2 S0(Rd) with
bh(0) = 1, kh� h0kS0  "0 and any |↵ � ↵0| < �0. Then we note that the
Fourier coe�cients of the a-periodized version of h, i.e.

H(x) :=
X

k2Zd

h(x� ka) 8x 2 Rd, (46)

satisfy the estimate
X

k2Zd\{0}

| bH(k)| =
X

k2Zd\{0}

|bh(↵k)| < �. (47)

Consequently, we have

|H(x)| =

�����
X

k2Zd

h(x� ka)

����� � 1� � > 0 8x 2 Rd. (48)
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Hence, 1/H defines a non-vanishing function in Cb(Rd), and the pointwise
multiplication operators, given as f 7! f/H, are well defined. In fact, they
form a uniformly bounded family of bounded operators on S0(Rd) with:

kf/HkS0  (1� �)�1kfkS0 , f 2 S0(Rd). (49)

Proof. We start by observing that h0 2 S0(Rd) = W (FL1, `1)(Rd) implies
that bh0 2 S0(Rd). Next we note that the dilation operators mapping f 7!
D⇢(f) with D⇢(f)(x) = f(⇢x), are uniformly bounded on

�
S0(Rd), k · kS0

�
for

any compact range of parameters inside of (0,1). By the restriction prop-
erty for S0(Rd) the restriction mapping RZd is bounded from

�
S0(Rd), k · kS0

�

to S0(Z), i.e. to
�
`
1(Zd), k · k`1(Zd)

�
is bounded, and thus f 7! (f(↵k)k2Zd) is a

uniformly bounded family of operators from
�
S0(Rd), k · kS0

�
to
�
`
1(Zd), k · k`1(Zd)

�
.

Together this implies that the mapping S : (h,↵) 7! RZd(D↵
bh) is a contin-

uous mapping from
�
S0(Rd), k · kS0

�
⇥ [↵0/2, 2↵0] to

�
S0(Rd), k · kS0

�
, which

satisfies at (h0,↵0) the condition

kS(h0,↵0)� �0k`1(Zd) < �0 < 1

and thus we will have, for � > �0:

kS(h,↵)� �0k`1(Zd) < � < 1

for all pairs (h,↵) which are close enough to the starting point (h,↵0), which
is the same as the validity of (47).

In order to connect this observation with the statements of the propo-
sition, we have to observe that each periodic function H appearing above
belongs to Wiener’s algebra A(Td) of absolutely convergent Fourier series
over Td. In fact, this claim can be justified as follows. We have to show that
the Fourier coe�cients of H belong to `

1(Zd). Writing a :=
P

k2Zd �ak we
have:

F(H) = F( a ⇤ h) = Ca( ↵ · bh), (50)

where Ca is a constant depending only on a (and the general setup). Equiva-
lently, the Fourier coe�cients of the periodic function H are just the samples
of bh over the dual lattice, i.e. they are of the form h 7! S(h,↵) for ↵ = 1/a,
which form a family of bounded linear mappings from

�
S0(Rd), k · kS0

�
to�

`
1(Zd), k · k`1(Zd)

�
. It is important to note that Wiener’s algebra (A, k · kA)
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is just the `
1-norm of the Fourier coe�cients of the absolutely convergent

Fourier series and thus we have independently from the lattice constant a:

kHk1  kHkA , (51)

and thus (A, k · kA) is continuously embedded into
�
Cb(Rd), k · k1

�
.

Now the estimate (47) implies that H is free of zeros and thus invertible
as a bounded, continuous functions. But it is also invertible in the Banach al-
gebra (A, k · kA) (with convolution in `

1(Zd) as multiplication corresponding
to point-wise multiplication of the functions H), and close to the identity Id,
which corresponds to �0, the Dirac delta at 0 in the Fourier series expansion.

Note that we do not have to invoke Wiener’s inversion theorem (see [57]),
which would not allow giving a norm estimate of the inverse anyway, but we
make use of the generic invertibility argument in general Banach algebras: If
an element in a (here commutative) Banach algebra is close enough to the
identity element in the given Banach algebra, i.e.

k1�HkA = k�0 � (bh(bk))k2Zdk`1(Zd) =
X

k2Zd\{0}

|bh(bk)| < �,

then the element is invertible and

k1/HkA = k
1X

n=0

(1�H)nkA  (1� �)�1.

Since the modulation operators (multiplication with pure frequencies) are
isometric on

�
S0(Rd), k · kS0

�
(if we use the standard norm) it follows that

(49) is valid:

kf/HkS0  k1/HkA kfkS0  (1� �)�1kfkS0 , f 2 S0(Rd). (52)

Given h0,↵0, a0, "0 and � > 0 as above we have:

Proposition 5.2. For any sequence an ! a0 and hn ! h0 in
�
S0(Rd), k · kS0

�
:

lim
n!1

kf/Hn � f/H0kS0 = 0, f 2 S0(Rd). (53)
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Proof. The continuous dependence on h 2
�
S0(Rd), k · kS0

�
is already covered

by Proposition 5.1.
Concerning the dependence on the lattice constant a we show strong

convergence. For this consider a fixed f 2 S0(Rd). Due to the uniform
boundedness of the family of division operators we can restrict our attention
to a dense subspace of

�
S0(Rd), k · kS0

�
. It is convenient to assume in this step

(without loss of generality) that f is band-limited, i.e. that supp( bf) ⇢ BR(0)
for some R > 0.

As we have seen, we can write the a-periodized version H of h as

a ⇤ h =

 
X

k2Zd

�ak

!
⇤ h =

X

k2Zd

Takh = H. (54)

We have to show that anf/Hn ! a0f/H0 in
�
S0(Rd), k · kS0

�
, for any f 2

S0(Rd). Since S0(Rd) is Fourier invariant and F(a a) = ↵ with ↵ = 1/a
we have, recalling that an ! a0 6= 0, just to verify that

lim
n!1

k( ↵n
bh) ⇤ bf � ( ↵0

bh) ⇤ bfkS0 = 0. (55)

In order to verify this result we invoke Theorem 5 of the recent paper [30] (or
Theorem 2.2.ii) of [23]), showing that it is su�cient to verify that ↵n

bh is
a bounded family of measures in Mb(Rd) = C

0

0(Rd) which is w⇤-convergent.
The boundedness is easy by direct verification using the sampling prop-

erties of S0(Rd), or by the observation that ↵n
bh is a bounded sequence of

translation-bounded measures (i.e. bounded in W (Mb, `
1)(Rd)) and thus

by “coordinate-wise” multiplication (see e.g. Thm.2.1 in [31]):

W (Mb, `
1) · S0 ⇢ W (Mb, `

1) ·W (C0, `
1) ⇢ W (Mb, `

1) = Mb(Rd)

provides an uniform estimate of the Mb-norms of the products.
Due to the boundedness, it is su�cient to test the w⇤-convergence for

' 2 Cc(Rd). The uniform continuity of ', and the compactness of supp(')
imply that the summation over Zd can be restricted to a finite subset F ⇢ Zd:

| ↵n (')� ↵0 (')| 
X

k2F

|'(k↵n)� '(k↵0)| ! 0, for n ! 1. (56)

The combination of these two estimates is left to the reader in order to
establish the claim of this proposition.
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Due to the Walnut representation, we can apply Proposition 5.1 for the
diagonal preconditioner. For a Gabor atom g 2 S0(Rd) which is normalized
in L

2(Rd) the choice h = |g|2 implies that one has bh(0) = kgk22 = 1. Since
S0(Rd) is an algebra with respect to pointwise multiplication (and closed
under conjugation) (see [24]) it is also clear that h 2 S0(Rd) in this case.
The assumptions of the above proposition are then applicable because we
know that G0 (arising in the Walnut representation) does not vanish in the
case that (g, a0, b0) defines a Gabor frame. We thus have:

Corollary 5.3. Assume that (g, a0, b0), with g 2 S0(Rd) defines a Gabor
frame, then the conditions of Proposition 5.1 are satisfied. Hence the mapping
g 7! Dg,⇤(g) defines a continuous mapping, i.e. the diagonally preconditioned
approximate dual atom depends continuously on g (in

�
S0(Rd), k · kS0

�
) and

the lattice parameters near a0.

Recall that the circulant preconditioners arise as diagonal preconditioners
on the Fourier side:

CF

g,�,⇤ = F �Dbg,b�,⇤0 � F⇤ = DF

bg,b�,⇤0 (57)

Thus we can derive the continuous dependence of the convolutionally pre-
conditioned approximate dual Gabor atom, making use of the (isometric)
Fourier invariance of

�
S0(Rd), k · kS0

�
:

Corollary 5.4. Assume that (g, a0, b0), with g 2 S0(Rd) defines a Gabor
frame, the conditions of Prop. 5.1 hold for h = |bg|2. Hence the mapping
g 7! Cg,⇤(g) defines a continuous mapping in a neighborhood of b0, i.e. the
diagonally preconditioned approximate dual atom depends continuously on g
(in

�
S0(Rd), k · kS0

�
) and the lattice constant b.

Our next goal is to combine these two observations, which turns out to the
non-trivial, as it is not just a bilinear procedure. For the proof we need the
following lemma providing a tightness statement for the collection of inverse
elements with respect to convolution, for a family of tight measures. Let us
first recall the concept of tightness (in the sense of uniform concentration)
for bounded subsets of (Mb(Rd), k · kMb

)3.

3The word tightness has nothing to do with tightness in the sense of frames in Hilbert
spaces!
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Definition 5.5. A bounded set of measures S ⇢ (Mb(Rd), k · kMb
) is called

tight if and only if 8✏ > 0, k 2 Cc(Rd) such that

kµ� µ · kkMb
 ", 8µ 2 S.

Lemma 5.6. Given a bounded, tight set S of bounded measures, inside a ball
of radius � < 1 in (Mb(Rd), k · kMb

) we have the following situation:

1. For any ⌫ 2 S the geometric series of convolution powers
J(⌫) =

P
1

n=0 ⌫
⇤n is absolutely convergent in (Mb(Rd), k · kMb

);

2. J(S) = {J(⌫), ⌫ 2 S} is a tight subset of (Mb(Rd), k · kMb
), with

kJ(⌫)kMb
 (1� �)�1, ⌫ 2 S.

Proof. First of all we observe that the series defining J(⌫) is absolutely con-
vergent in the Banach space (Mb(Rd), k · kMb

), with

kJ(⌫)kMb


1X

n=0

k⌫⇤nkMb


1X

n=0

�n  (1� �)�1.

Next, we recall that the convolution product of two tight subsets (in
`
1(↵Zd), viewed as a subset of (Mb(Rd), k · kMb

)) is again a tight subset (see
[23], Lemma 2.1) hence - by induction - we gain (boundedness and) tightness
of the sets Sn := {⌫⇤n, ⌫ 2 S} for any n � 1, but also the addition of tight
subsets is tight. This means that for every fixed K 2 N the set of all partial
sums to J(⌫) of order K forms a tight and bounded subset. Noting that, by
the choice of K, we can assure that one has for any ⌫ 2 S:

kJ(⌫)�
KX

n=0

⌫⇤nkMb


1X

n=K+1

�n < "/2.

Combining these to facts one finds that J(S) itself will be a tight (and
bounded) subset of Mb(Rd).

Based on these observations we can verify the continuous dependence
of the approximate dual window obtained by the double preconditioning
method. It is one of the analytic key results of this paper.
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Theorem 5.7. Double preconditioning depends continuously (in the strong
sense by means of

�
S0(Rd), k · kS0

�
) on the parameters. In other words,

given certain initial parameters g0, �0 2 S0(Rd), some lattice ⇤0 and for
a given f 2 S0(Rd) and " > 0 one has: Whenever g, � are close to g0, �0 in�
S0(Rd), k · kS0

�
, and ⇤ close to ⇤0 in the sense of their generating 2d⇥ 2d -

matrices, then one can assure that

kPg,�,⇤(f)�Pg0,�0,⇤0(f)kS0  ". (58)

This last estimate can be granted uniformly for f 2 M , where M is any
compact subset in

�
S0(Rd), k · kS0

�
. An analog result is true for the alternative

double preconditioner Rg,�,⇤.

Proof. Given a Gabor frame arising from (g, a, b), with g 2 S0(Rd), we know
that the main diagonal of the Gabor frame operator is non-vanishing [43,
Prop. 6.5.5.]. We thus can expect to apply Proposition 5.2 above, with
h = |g|2 2 S0(Rd) and f = g; The condition

P
k2Zd |bh0(↵0k)| = 1 + �0 < 2 is

satisfied for all the lattice constants ↵0 which are big enough. In fact, that
bh = F(|g|2) = bg ⇤bg⇤ belongs to S0(Rd) ensures that the value is always finite
and tends to bh(1) = kgk22 = 1 (by the usual normalization of Gabor atoms).

As the convolutional preconditioner is up to the conjugation with the
Fourier transform (an automorphism of

�
S0(Rd), k · kS0

�
) just the diagonal

preconditioner for (bg, b, a) the result forRg,�,⇤ follows by the same arguments.

Theorem 5.8. Assume that (g0,⇤0) defines a Gabor frame, for a given lattice
⇤0 = a0Zd⇥ b0Zd and some Gabor atom g0 2 S0(Rd). Given any compact set
M ⇢ S0(Rd) containing g0 and any su�ciently small compact neighborhood
U of the lattice ⇤0, i.e. with |a� a0|  �0 and |b� b0|  �0.

Then the family of operators Pg,⇤ is uniformly bounded on
�
S0(Rd), k · kS0

�

(for g 2 S0(Rd), ⇤ 2 U), and for any fixed f 2 S0(Rd) the mapping
(g,⇤) 7! Pg,⇤(f) is a continuous mapping from M ⇥U into

�
S0(Rd), k · kS0

�

(with respect to the natural topologies).
In particular, the double preconditioned approximate dual Gabor atom

Pg,⇤(g) depends continuously on the pair (g,⇤) over M ⇥ U .

Proof. We have to show that for given (g0,⇤0) and " > 0 we can find some
neighborhood of (g0,⇤0) such that one has for all pairs of Gabor atoms g
(close to g0 in the sense of

�
S0(Rd), k · kS0

�
) and ⇤ (close to ⇤0):

I := kPg0,⇤0(g0)�Pg,⇤(g)kS0  ". (59)

30



As a first step, we observe that Theorem 5.7 allows us to guarantee that
all the preconditioners, in particular Dg,⇤, and CA and Pg,⇤ are uniformly
bounded on

�
S0(Rd), k · kS0

�
. Let us denote the common bounds by C0.

In order to obtain (59) we split the di↵erence in the following way:

Pg,⇤(g)�Pg0,⇤0
(g0) = [Pg,⇤(g)�Pg,⇤(g0)] + [Pg,⇤(g0)�Pg0,⇤0

(g0)] (60)

and so we have

[Pg0,⇤0
(g0)�Pg,⇤(g0)] = [CA0 � (Dg0,⇤0 �Dg,⇤)(g0)] + [CA0 � CA](Dg,⇤(g0)).

(61)
Applying the triangular inequality gives us as a first estimate for (59):

I = kPg0,⇤0
(g0)�Pg,⇤(g)kS0  II + III + IV, (62)

which are estimated separately. Thanks to the uniform bound on the pre-
conditioners one has

II = kPg,⇤(g0 � g)kS0  C2
0 kg0 � gkS0 , (63)

III = kPg0,⇤0(g0)�Pg,⇤(g0)kS0 = k[CA0 �Dg0,⇤0 ](g0)� [CA0 �Dg,⇤](g0)kS0 ,
(64)

and finally
IV = k[CA0 � CA](Dg,⇤(g0))kS0 . (65)

Let us treat each of the terms separately, and ensure that the overall
di↵erence for (62) can be estimated by " > 0 by making sure that each of
the three estimates allows coming up with an estimate of size "/4.

Continuing the estimate (64) for III above we have

III  |kCA0 |kS0 · kDg0,⇤0
(g0)�Dg0,⇤(g0)kS0  C0kDg0,⇤0

(g0)�Dg,⇤(g0)kS0 .
(66)

This term can be controlled by invoking (53) and choosing the neighborhoods
of g0 and ⇤0 small enough to ensure, for fixed f0 = g0 we have

kDg0,⇤0
(g0)�Dg,⇤(g0)kS0  "/(4C0). (67)

The most delicate part is the final estimate for IV. Here it is not enough to
observe that the considered set {Dg,⇤(g0)} is bounded, because we cannot
expect a norm estimate for the di↵erence operator [CA0 � CA] to hold true,
as we only have strong convergence combined with uniform boundedness.
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However, we can save the situation, because the explicit description of the
set {Dg,⇤(g0)} ⇢ S0(Rd) allows us to invoke the general compactness criterion
given in [25] or [28] for the Banach space

�
S0(Rd), k · kS0

�
. As a matter of

fact, the admitted diagonal preconditioners define a family of functions which
is equicontinuous in the Fourier algebra, because it required (up to a small
error) only the multiplication with pure frequencies up to some given maximal
frequency. Multiplying a single function (here the Gabor atom g) with such a
family of diagonally preconditioned windows Dg,⇤(g0) which form a bounded,
tight and equicontinuous, hence a relatively compact subset of S0(Rd).

The fact that the pointwise product of two bounded, equicontinuous fam-
ilies is again equicontinuous, but now also tight if one of them is tight, is
discussed in the Lemma presented in in Appendix 2. As a consequence one
obtains relative compactness in

�
S0(Rd), k · kS0

�
.

Remark 5.9. The continuous dependence provided above implies among oth-
ers that the exact choice of the local lattice constants for the double pre-
conditioners is of minor importance because small changes will not have a
significant impact on the computed approximate dual Gabor atom. This is
particularly useful to have in mind for slowly varying lattice constants, as it
is discussed in the quasi-regular situation (see section 8.3 below).

6. Double Preconditioning for the Banach Gelfand Triple

In the last section, we have shown that double preconditioning makes also
sense in the continuous case. Now we want to explore the potential of this
method in the context of the Banach Gelfand Triple (S0,L

2,S0

0)(Rd) (see
Section 2.1.3).

In the most general setting, the starting point is the observation that the
Gabor frame operator generated by the pair (g,⇤) commutes with all the
TF-shifts from the lattice ⇤ � Rd ⇥ bRd. This implies that the Gabor frame
operator has a spreading symbol which is supported on the adjoint lattice ⇤��

Rd ⇥ bRd. Even in the most general setting, meaning that we only have g 2
L

2(Rd), without the usual Bessel condition on the Gabor family (g,⇤), we
know that the frame operator Sg,⇤ - which possibly is unbounded on L

2(Rd)
- defines a bounded linear operator from

�
S0(Rd), k · kS0

�
to (S0

0(Rd), k · kS0
0
).

By a combination of Thm.7.7.5 in [35] with Thm.3.3.1 of [41] this implies a
spreading representation of the form

Sg,⇤ = C⇤

X

��2⇤�

Vgg(�
�)⇡(��), (68)
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with coe�cients which are a multiple of (Vgg(��))
��2⇤� in c0(⇤�), the space

of bounded sequences over ⇤�, tending to zero at infinity. To see this, note
that Vgg 2 C0(Rd ⇥ bRd) for g 2 L

2(Rd) and Vgg 2 S0(R2d) for g 2 S0(Rd)
by [41]. On the other hand kVggk1  kgk22 for g 2 L

2(Rd), hence Vgg
belongs to the closure of S0(R2d) in L

1(R2d) with respect to the sup-norm,
i.e. to C0(R2d). For all practical applications, it is very reasonable to assume
at least that g 2 S0(Rd) (see [43]). In such a case it is well known that
Vgg 2 S0(Rd ⇥ bRd), and hence these coe�cients belong to `

1(⇤�), with the
corresponding estimate:

k(Vgg(�
�))��2⇤�k`1(⇤�)  C1

⇤kgkS0

2, g 2 S0(Rd). (69)

The reader may consult Section 13.4 of [43] for considerations concerning
the rotation algebra which describes the composition of operators with such
a concentration of the spreading function via twisted convolution (see [43]).
The problem of determining, whether an operator in such a non-commutative
Banach algebra is invertible, and in fact the wish to approximate this inverse
in an e�cient way, is thus a non-trivial mathematical task.

The approach taken in [44] makes use of spectral methods for non-com-
mutative Banach algebras and shows the interesting (and deep) fact that for
Gabor atoms g 2 S0(Rd) the invertibility of the frame operator Sg,⇤ on the
Hilbert space implies that its restriction to

�
S0(Rd), k · kS0

�
is also defining

an invertible automorphism for
�
S0(Rd), k · kS0

�
. The boundedness of Sg,⇤

on
�
S0(Rd), k · kS0

�
is not very di�cult (see [41]), the point is the (abstract

claim of) bounded invertibility on
�
S0(Rd), k · kS0

�
, which is equivalent to

the condition that the dual atom eg also belongs to S0(Rd). In fact, we have
eg := S

�1
g,⇤(g), but since the inverse of the frame operator Sg,⇤ is just Seg,⇤

the converse is true as well. This gives the starting point for the theory of
modulation spaces [27, 22], and localized frames [42, 5].

However, one must say, that the abstract methods of the papers by
Gröchenig and Leinert ([44], for the rational case see also [32]) do not provide
explicit norm estimates for eg in

�
S0(Rd), k · kS0

�
respectively of the operator

norm of the inverse frame operator on
�
S0(Rd), k · kS0

�
.

There are certain cases, where the invertibility of the Gabor frame oper-
ator is easy because the frame operator takes a particularly simple form. For
these cases, it is also easy to compute the square-root inverse of the frame
operator, respectively the canonical tight Gabor atom. Let us list such cases:

1. It is possible that the frame operator is just a multiplication operator.
This can be seen in the typical case of a triple (g, a, b), with a compactly
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supported Gabor atom g with supp(g) ✓ B�(0) for some �  1/2b. This
painless case has been described already in one of the first papers on
Gabor analysis (see [17]). An equivalent statement is also possible for
non-stationary Gabor transforms with the same - but time-varying -
support su�cient condition [3].
More generally, it is enough that the diameter of the support of g is at
most 1/b, because the property of generating a Gabor frame is invariant
under translation of the Gabor atom, i.e. it is valid for g if and only
if it is true for some or any translate Tyg. In fact, the Gabor frame
operator for Tyg is unitary equivalent to Sg,⇤ by conjugation with the
shift operator Ty, i.e.

STyg,⇤ = Ty � Sg,⇤ � T 0

y
, y 2 Rd.

In a similar way one can replace g by ⇡(�)g, i.e. we have

S⇡(�)g,⇤ = ⇡(�) � Sg,⇤ � ⇡(�)0, � 2 Rd ⇥ bRd. (70)

We will discuss an extension of this observation in subsection 6.2.
2. Using the observation that the Gabor frame operator is (via the Fourier

transform) equivalent to the Gabor frame operator (Sbg, b, a) we find
that the Gabor frame operator allows a painless inversion on the Fourier
transform side, if g is a band-limited function with supp(bg) ⇢ B�(0),
for some � < 1/2a.

3. Finally, we should discuss the case of a critical lattice, which is in fact
(at least for all practical purposes) a lattice of the form ⇤ = ⇤1 ⇥ ⇤?

1 .
In this case the TF-shifts from ⇤ form a commutative group, i.e. the
mapping � 7! ⇡(�) is not just a projective representation (see [11],
or [43]) but it is in fact a true, unitary representation. This means
that the composition laws for this family of TF-shifts is isomorphic
to the corresponding group of shift operators acting on ⇤. Since ⇤
is a commutative group under addition we are faced with the simple
problem of inverting a convolution operator (acting on ⇤), which is easy,
making use of Fourier transform methods. However, in the concrete
case of the standard von Neumann lattice ⇤ = Z⇥Z�R⇥ bR one better
refers to the (equivalent, but much better known) Zak transform, which
is known to provide a highly e�cient method for the treatment of TF-
lattices with integer redundancy. For the critical case, this method is
not very useful in practice and with respect to our discussion, because

34



the Balian-Low principle prohibits the existence of atoms g 2 S0(Rd)
such that (g, a, 1

a
) generates a Gabor frame for

�
L

2(Rd), k · k2
�
(see

[43]).

One can say, that the idea of double preconditioning is essentially based on the
following observation: If the time-localization of g is not satisfied exactly, but
at least approximately, then the inversion of the diagonal part of the matrix
is expected to provide a good approximate inversion. If the same happens on
Fourier side then the circulant part of the Gabor frame operators will improve
the situation. In certain cases one can expect that their combination, done
in the right way, may even perform better.

Back to the diagonal preconditioner on can say that such considerations
have been already pursued in an early paper by Casazza and Christensen,
formulating su�cient conditions for the invertibility of the Gabor frame op-
erator on

�
L

2(Rd), k · k2
�
, see [9] (Thm.2.1). Their approach was extending

earlier results by I. Daubechies ([16], Thm.2.5). In the finite discrete case,
it corresponds essentially to the diagonal dominance of the corresponding
matrix (which always implies invertibility).

6.1. Banach Algebra Generated by Adjoint TF-shifts

For the functional analytic description the following Banach algebra will
be of relevance. Given a lattice ⇤ � Rd ⇥ bRd (i.e. ⇤ = A ⇤ Z2d for some
non-singular real 2d⇥ 2d-matrix A) we will consider the algebra

A⇤�
:= {T =

X

��2⇤�

c��⇡(��) with
X

��2⇤�

|c�� | < 1}. (71)

Here ⇤� is the adjoint lattice, which turns out to be - up to an exchange of
coordinates - to be given by (A1)�1 ⇤ Z2d (see [41], Chap. 3.5.3).

For the most interesting cases, i.e. for lattice ⇤ with modest redundancy,
this representation is in fact unique (because the operators {⇡(��),�� 2 ⇤�}
form a Riesz projection basis for A⇤�

, see [29] and [41] for the terminology).
However, to make the discussion easier let us take the naive norm for this
space, which is the infimum over the `1-norm of coe�cients over all admissible
representations of T as in (71) as follows:

kT | A⇤�k = kTk
A⇤� := inf

admiss.repr.

X

��2⇤�

|c�� |, (72)
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where the Infinium is taken over all ”admissible representations” of T , i.e. a
representation as in (71). Let us collect a few facts about this algebra (which
has appeared in several papers on Gabor analysis, see [47], for example):

Theorem 6.1. Given any ⇤� Rd ⇥ bRd we have:

1.
�
A⇤�

, k · |A⇤�k
�
is a self-adjoint Banach algebra under composition.

2. A⇤�
is a subalgebra of all the operators which are Banach Gelfand triple

morphism for (S0,L
2,S0

0)(Rd), commuting with all the TF-shifts arising
from {⇡(�),�2⇤}.

3. For any g 2 S0(Rd) such that (g,⇤) defines a Gabor frame for L
2(Rd)

the Gabor frame operator defines an invertible element in A⇤�
.

Remark 6.2. Depending on the structure of ⇤ resp. ⇤� the algebra A⇤�
will

be commutative or not. In the general case, the composition can be described
in a unique way via twisted convolution, but the point of our discussion is,
that we do not have to go deeper into this form of the analysis in order to
appreciate the role of double preconditioning.

Since Theorem 6.1 is not stated in the required form in the published
literature let us provide a proof for the convenience of the reader.

Proof. i) The norm property and the completeness are routine questions that
are left to the interested reader. The fact that it is a Banach algebra under
composition (which can be described as twisted convolution, see [43]) is based
on the combination of two facts:

• The twisted convolution is coordinate-wise dominated by the ordinary
convolution (of two sequences on the Abelian group ⇤�, with addition).

•
�
`
1(⇤�), k · k`1(⇤�)

�
is a solid Banach algebra with respect to convolution

(over ⇤�), i.e. it is closed under convolution, and furthermore an esti-
mate |a�� |  |b�� | for two sequences over ⇤�, with b 2 `

1(⇤�), implies
that also a 2 `

1(⇤�) and kak`1  kbk`1 .

ii) Observe that A⇤�
is continuously embedded into the operator algebra

of any Banach space of functions or distributions for which TF -shifts act
isometrically, i.e. with

k⇡(�)(f)kB = kfkB, f 2 B. (73)
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In fact, the norm in
�
A⇤�

, k · |A⇤�k
�
dominates the operator norm on any of

these spaces, since we have for any T =
P

��2⇤� c��⇡(��) 2 A⇤�
the obvious

estimate
kfkB 

X

��2⇤�

|c�� |k⇡(��)(f)kB  kfkB
X

��2⇤�

|c�� |. (74)

Since this estimate is valid for any representation one can take the infimum
over the right-hand side and obtain in this way

kT (f)kB  kfkBkT | A⇤�k, f 2 B. (75)

In other words,
�
A⇤�

, k · |A⇤�k
�
is continuously embedded into the operator

algebra over such a space (B, k · kB). Of course, the three spaces constituting
the BGT (S0,L

2,S0

0)(Rd) are in this category. The w⇤-w⇤--continuity is also
easily verified, since the adjoint operator (in the Hilbert space sense) also
belongs to A⇤�

(with the same norm), and T = T ⇤⇤.
iii) We know from Janssen’s representation (12) that the Gabor frame

operator Sg,⇤ is of the required form, with coe�cients arising as samples of
Vgg over the adjoint lattice, i.e. a multiple of (red(⇤)Vgg(��))

��2⇤� . Since we
know that Vgg 2 S0(R2d) for g 2 S0(Rd) the membership of Sg,⇤ in A⇤�

can
be granted (see the estimate (69) above).

In this setting the so-called Janssen Criterion comes in easily:

Lemma 6.3. Any operator T 2 A⇤�
, such that for some � < 1 one has

X

0 6=��2⇤�

|c�� | < � |c0| (76)

with kT�1 | A⇤�k  ((1� �)|c0|)�1.

Proof. The assumptions imply that c0 6= 0, so we may divide by it. Since
we have Id = ⇡(0) (with 0 = (0, 0) 2 ⇤�), the multiplicative identity in the
Banach algebra A⇤�

, condition (76) can be expressed as the estimate

kId� 1

c0
Tk

A⇤� < � < 1,

which, by standard arguments of Banach algebra theory (using a Neumann
series) guarantees the invertibility of T and the norm estimate via a geometric

series giving k
h

1
c0
· T
i�1

| A⇤�k = |c0| · kT�1 | A⇤�k < (1� �)�1.
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The goal of preconditioning is, of course, to bring a given operator closer
to the identity operator. The standard idea is to choose some approximations
of the given operator which is easily invertible and do a good job in this sense.
We formulate this principle in the following way:

Corollary 6.4. Assume that we have kId�B � T | A⇤�k  � < 1, for some
invertible operator B 2 A⇤�

. Then T is invertible in A⇤�
and we have

kT�1 | A⇤�k  (1� �)�1kB�1 | A⇤�k. (77)

As the numerical experiments indicate the natural choices of such simple
preconditioners from the Banach algebra A⇤�

, namely the central multiplier
of the Walnut representation (respectively the diagonal part of the Gabor
frame matrix, in the finite-dimensional case) and the analog on the Fourier
transform side turns out to work quite e�ciently and enables in most cases
of interest to establish the invertibility of the Gabor frame operator.

In fact, for the classic situation of a Gabor frame with the input (g, a, b)
the adjoint lattice is just (1/b)Z⇥(1/a)Z. Thus the Janssen criterion requires
a normalized atom with kgk2 = 1 that

X

(k,n)2Zd⇥Zd

|Vgg(k/b, n/a)| = 1 + � < 2, (78)

while for the invertibility of each of the two preconditioners only one of the
following two estimates is required:

X

n2Zd

|Vgg(0, n/a)| < 1 + �1, (79)

respectively for the Fourier version:

X

k2Zd

|Vgg(k/b, 0)| < 1 + �2, (80)

for suitable values �, �1, �2 < 1. We leave the optimization of parameters to
the interested reader, as it will depend on the configuration (the lattice, the
window, and so on).
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6.2. Benefit of the Choice of Preconditioners

We have seen that the preconditioners used so far all have in common that
they arise as operators in the Banach algebra A⇤�

, and thus act uniformly on
all the Banach spaces (B, k · kB) on which TF-shifts ⇡(�) act isometrically.

As a benefit, we can point out two possible motivations for the use of
preconditioners can be put into a logical connection using this common fact.
Because the results given in this subsection apply to any of the precondition-
ers discussed so far we use the generic symbol T for a typical operator of this
kind, noting that they are all special cases of operators as in the previous
section.

The inversion problem for the Gabor frame operator Sg,⇤ and the con-
struction of the canonical dual Gabor atom eg = S

�1
g,⇤(g) are equivalent tasks,

due to the well-known relation S
�1
g,⇤ = Seg,⇤. For similar reasons the following

two aspects of Gabor theory are closely related:

1. Given a (re-scaled version of) Sg,⇤, which might be too far away from
the identity operator, one might want to find a suitable precondi-
tioner T such that T � Sg,⇤ is getting closer to Id (as operator on�
L

2(Rd), k · k2
�
or on the BGT);

2. Starting from the initial guess h for a dual atom, we want to find a
better approximation of eg by applying some operator T to h, and then
use Th as an improved approximation to eg.

We show that in fact, these two perspectives are equivalent!

Lemma 6.5. For any T 2 A⇤�
one has

T � Sg,h,⇤ = Sg,Th,⇤, (81)

and
Sg,h,⇤ � T = ST⇤g,h,⇤ (82)

Proof. Let us provide a detailed proof for (82), formula (81) can be verified
by similar arguments.

By the definition of ⇤� we have

⇡(�) � ⇡(��) = ⇡(��) � ⇡(�), 8� 2 ⇤, �� 2 ⇤�.

Since any T 2 A⇤�
(or also T⇤ 2 A⇤�

) can be approximated by finite linear
combinations of operators ⇡(��),�� 2 ⇤�, it is clear that we have

⇡(�) � T = T � ⇡(�), �2⇤. (83)
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Since T 2 A⇤�
if and only if T⇤ 2 A⇤�

a similar commutation relation holds
true for T⇤.

Next, we use that frame-like operators have an absolutely convergent
Janssen representation for any pair g, h 2 S0(Rd) , i.e.

Sg,h,⇤(Tf) =
X

�2⇤

hTf, ⇡(�)gi⇡(�)h =
X

�2⇤

hf,T⇤(⇡(�)g)i ⇡(�)h = (84)

=
X

�2⇤

hf, ⇡(�)(T⇤g)i⇡(�)h = ST⇤g,h,⇤f, f 2 L
2(Rd). (85)

In our applications the di↵erent preconditioners are self-adjoint (in fact
strictly positive) operators, and thus in such a case T⇤ = T and we can see
that the (according to our numerical experience, most of the time) excellent
approximation of eg by T(h) allows the estimate

kf � S g,Th,⇤(f)kB  k[Sg,eg,⇤ � Sg,Th,⇤](f)kB  C⇤ · keg � ThkS0kgkS0kfkB.
(86)

Equivalently, we have in this situation

|kId�S g,Th,⇤|kB!B  C⇤ · kgkS0 · keg � ThkS0 . (87)

This shows that Th provides a good approximate reconstruction from the
sampled STFT of f with window g, with control of the reconstruction error
(in the operator norm on

�
L

2(Rd), k · k2
�
or
�
S0(Rd), k · kS0

�
, for example).

The other version makes use of the approximate dual window for synthesis
and then one can say, that Th provides a good approximate recovery of f
from the samples (Vgf (�))�2⇤:

kf � STh,g,⇤(f)kB  kSeg,g,⇤ � STh,g,⇤(f)kB  C⇤ · keg � ThkS0kgkS0kfkB.
(88)

Again, this is valid for (B, k · kB) =
�
L

2(Rd), k · k2
�
or
�
S0(Rd), k · kS0

�
.

Note that the constant C⇤ does not depend on the particular choice of B
as long as the TF-shifts ⇡(�) act isometrically on (B, k · kB).

7. Numerical Exposition

In this section, we provide numerical demonstrations that show the qual-
ity of the preconditioning method for di↵erent lattices, hence redundancy
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Figure 3: Left: L
2 distances of diagonal preconditioned duals to the canonical duals.

Right: L2 distance of preconditioned duals to the canonical duals.

settings. The starting point for the computations is a periodized Gaussian
as window function with a length of n = 480 samples. For other signal lengths
(preferably with many divisors) the results are similar. In other words, we
present the results for a typical case.

For n, all divisors are computed, so that all possible choices of regular
lattices ⇤ = aZ ⇥ bZ can be considered. The di↵erent hop sizes are aligned
to the axes: the ones corresponding to time, denoted by a to the x-axis, and
the ones for frequency, b to the y-axis, both in an increasing manner. This
produces table plots where high redundancy systems pertain to the lower left
corner and low redundancies to the upper right one. The diagonal (white dots
in the figures) indicate the cases where the redundancy of the Gabor system
is critical, i.e. n

a·b
= 1. For each pair below this diagonal, approximate

canonical dual windows are computed and compared to the canonical duals.
Very eccentric lattices, i.e. where a

b
or b

a
is large yield ill-conditioned Gabor

systems and thus, are not computed in the plots. The corresponding cases
are indicated by the red triangle-shaped framing.

7.1. Single Preconditioning

As previously discussed, considering the single preconditioners in the con-
text of the Janssen representation yields the following expectation:

1. Diagonal preconditioning yields good approximate duals for small b
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Figure 4: Left: L
2 distances of double preconditioned dual windows to canonical dual

windows across all (non-eccentric) lattices. Right: Logarithmic L
2 distances.

2. Circulant preconditioning yields good approximate duals for small a

Thinking of the structure of the Gabor frame matrix, this corresponds to
the intuition that the approximations should be good when the matrix is
diagonally dominant, either directly or in the Fourier domain. Figure 3 shows
the above-described table plot with logarithmic error values for both single
preconditioning methods applied separately, showing the expected behaviors.

7.2. Double Preconditioning

Due to its recursive manner, the double preconditioner can benefit from
both single variants, which can be well observed in Figure 4. One immedi-
ately notices that the method works impressively well, even for redundancies
close to the critical border. Having in mind that, in fact, a decent amount of
redundancy is required for many applications, the method already yields very
good approximations for most situations of practical interest. One further
notices that the error values are symmetric in a and b, which is a consequence
of the Gaussian window with a time-frequency ratio of 1. When dilating the
window, a quality shift occurs, according to what one would expect: For wide
windows, the error gets worse for large values of b and vice versa for narrow
windows.
Additionally, we observe an interesting behavior for the cases where the re-
dundancies are even integers. The right plot in Figure 4 emphasizes this
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pattern by showing log(kg̃(ap) � g̃k). Black dots mark the even redundancy
cases and white dots the odd redundancy cases. To double-check this phe-
nomenon, we verified that this pattern does not occur in the case where n is
given by a power of two. For the moment we can only conjecture why this is
happening and postpone a more detailed discussion to future work.

8. Application

8.1. Approximation of the Canonical Tight Gabor Atom
A (Gabor) frame is called tight if the optimal frame bounds A,B coincide.

As a consequence, the corresponding frame operator is just a multiple of the
identity operator, i.e. Sg,⇤ = A·I, so that by a simple re-scaling (by the factor
1/
p
A) one obtains a so-called Parseval frame with A = B = 1. Obviously,

the canonical dual frame coincides with the original frame in such a case.
Such Gabor frames are particularly useful to the implementation of Gabor

multipliers because one can expect that signal concentrated in areas where
the multiplier is close to a given numerical value will be more or less just
multiplied (enhanced or damped) by this very factor. Tight frames have
the additional advantage that real-valued multipliers induce self-adjoint op-
erators, and the constant symbol 1 gives the identity (for details in a more
general context see [2]), as one may expect from a symbolic calculus. Fur-
thermore, if the multiplier (upper) symbol takes values in the interval [↵, �]
for 0 < ↵  � < 1 then the eigenvalues of such a symmetric operator will
be inside this same interval (see [18] and [39]).

The usual way to generate a (canonical) tight Gabor frame in our situation
is to apply the inverse square root of the (positive definite) frame operator to

g, i.e. to obtain a new generator gt = S
�1/2
g,⇤ g, which is known to be among all

the possible candidates in L
2(Rd) the one which is most close to the original

choice g 2 L
2(Rd) while generating a tight Gabor frame for the lattice ⇤.

One can extend the double preconditioning method in a straightforward
manner to approximate gt and since computing the square root of a multi-
plication operator is easy,

Pt = C1/2
�
D1/2

Sg,⇤

�
D1/2 (89)

provides an e�cient and good approximation to gt.
We shall illustrate also numerically that this approximation scheme works

in general impressively well. The approximation quality, clearly, is compara-
ble to the original application of approximating the canonical dual. Figure
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Figure 5: Left: L2 distances of double preconditioned canonical tight windows to canonical
tight windows across all (non-eccentric) lattices. Right: Window comparison for the lattice
where a = 16 and b = 20, i.e. the Gabor system has a redundancy of 1.5.

5 shows the initially described table plot for all possible (yet reasonable)
lattices and a direct comparison of the approximated tight and the original
tight window.

8.1.1. The FAB method
As mentioned above tight windows have big advantages, so there are

several approaches to construct tight Gabor frames [20], in particular, for
the application of orthogonal frequency division multiplexing (OFDM) [7].
The method presented there, called FAB-method, is described as follows: For
fixed a = 1

2 and b = 1 and g(t) = (2↵)1/4 e�⇡↵t
2
, it is defined as

h(FAB) = OaF
⇤ObF (g), (90)

where

O�g =

 
�

1X

i=�1

|g(t� k�)|2
!�1/2

(g). (91)

Clearly, this corresponds precisely (up to a scaling factor) to the double
preconditioning procedure to compute an approximate canonical tight Ga-
bor atom, where the circulant preconditioner is applied first. Hence in our
notation, we can extend the FAB-method to any a, b and g by defining

g(FAB) = D1/2

g,g(t,C),⇤
C1/2
g,⇤(g), (92)
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where g(t,C) = C1/2
g,⇤(g). Note that since the goal here is to produce a tight

Gabor frame, the scaling in (91) is not crucial.

8.2. Iterative Procedure

It was shown that for decent redundancy and “nice” windows, a dou-
ble preconditioned window already yields a very good approximation of the
canonical dual window and thus, is certainly su�cient for many applications.
However, as already mentioned in [4] double preconditioning provides a very
good starting point for the Neumann algorithm, i.e. using PS instead of
S. We would like to mention a simple trick to instantly improve the algo-
rithm, based on the Euler method, or power of two trick. For this, note
that using P as preconditioner, kI � PSk < 1 holds and thus, clearly also
k(I � PS)2k < kI � PSk. In the matrix setting, computing this power of
two requires only one more matrix multiplication since

(I � PS)2 = I � 2PS + PSPS (93)

= I � PS · (2I � PS). (94)

So, P 0 = PS ·(2I�PS) can be used as a new - and certainly better - starting
point for the Neumann algorithm. The iteration steps would then write as

xk = (I � P 0)kg (95)

which clearly converges faster with a numerical e↵ort that equals the one of
a single iteration, O(n2).

8.3. Approximate Duals on Quasi-Regular Lattices

For regular lattices, the approximation of a dual Gabor frame via pre-
conditioning requires the computation of a single atom which is then shifted
in time and frequency to build the approximate dual Gabor system. This is
possible due to the underlying group structure. In a non-regular situation,
this is not possible anymore. Even in the analytic case, a dual frame is in
general, not a Gabor frame, i.e. a collection of TF-shifts of a single atom g̃.
Instead, one would need to solve the system of linear equations Sg,⇤g̃ = g
directly, which is numerically very expensive. We can use the idea of pre-
conditioning also in this setting to approximate dual atoms locally for every
lattice point and build a global approximate dual system with them. This
idea has been implemented for non-stationary Gabor frames [3], where the
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Figure 6: Left: Lattice with parameters slowly varying from 10 to 22 for a signal of
length 600. This yields a maximum redundancy in the resulting Gabor system of 6 and
a minimum of 1.24. Right: Distances of the preconditioned and TF-shifted duals to the
duals coming from the pseudo-inverse of the Gabor matrix.

authors use single preconditioning locally to obtain an approximate global
dual, see [19].

Here we would like to emphasize the case where the lattice is quasi-regular,
i.e. the lattice parameters a, b are slowly varying in time and frequency simul-
taneously. The left plot in Figure 6 shows an example of such a quasi-regular
lattice. By the continuity results in Section 5 we can expect the double
preconditioning method to work reasonably well in this setting. An approx-
imate dual can be found by using local lattice parameters that are derived
individually for every lattice point. Furthermore, the analytic construction of
the double preconditioner derived in Section 3.1 makes it possible to choose
the local parameters freely without the divisibility necessity of n

a
, n
b
to be

integers. In the presented experimental setup we computed the local lattice
parameter to be the rounded averages of the distances to the neighboring
points.

The right plot in Figure 6 shows the regional errors of the preconditioned
approximated duals to the dual system computed with the pseudo-inverse of
the Gabor matrix, consisting of the time-frequency-shifted versions of g ac-
cording to the quasi-regular lattice. One clearly recognizes the region where
the lattice is densest from the error values. The slices occur at the quanti-
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Figure 7: Upper row: A selection of approximate dual windows via double preconditioning.
Lower row: Exact dual windows computed using the pseudo-inverse.

zation steps, i.e. where the rounded averages jump to the next integer and
thus, produce a larger error.

We note that the choice of the local parameters (e.g. by using local av-
erages as in our case) is somewhat arbitrary and requires some quantization
in the discrete case. However, in the discussion in Section 5 on the contin-
uous dependence we provided arguments why it is actually not crucial how
quantization is done in particular.

Figure 7 shows a direct comparison between the windows for three typical
positions within the quasi-regular family. Notice that the preconditioned
windows (upper row) have symmetric shapes as they arise from regular Gabor
systems. In contrast, the windows arising in the canonical dual of the system
(lower row) have to take into account the varying lattice parameters, they
are asymmetric. Clearly, the preconditioned windows do not “know” their
neighbors. The resulting approximate dual system yields a reconstruction
error that is at 10�10 after 10 iterations of the above iteration scheme. In fact,
this approach provides good approximate dual Gabor atoms at each point
and it seems that under suitable conditions (to be discussed in subsequent
work) the overall Gabor family, with now slowly varying atoms will constitute
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an approximate dual frame in the spirit of [14].

9. Conclusion and Outlook

In this paper, we try to move the idea of double or even multiple precon-
ditioning (i.e. concatenation of various preconditioners arising from di↵erent
commutative subgroups of ⇤?) for Gabor families from a purely experimental
observation as presented in [4] to a more detailed mathematical analysis, by
discussing algebraic, numerical, and functional analytic aspects. The start-
ing point is the Janssen representation of a Gabor frame operator S = Sg,⇤,
which is valid for general lattice ⇤, and describes the spreading represen-
tation of of S, which is supported on the adjoint lattice. For the classical
case of Gabor families arising from (g, a, b) this is equivalent to the Walnut
representation.

The interpretation of the two preconditioners as the inverse to best ap-
proximations (in a suitable sense) of S in the spreading domain, and the fact
that they are making use of commutative (in the TF-sense) subgroups of ⇤�

ensures that they are easy to realize and also explains, among others, why
and when they commute or almost commute.

Finally, we indicate the usefulness of the approach to quasi-regular sit-
uations, where one has to compute a large number of (approximate) dual
atoms. For reconstruction tasks, such approximate dual Gabor families can
be employed to obtain perfect reconstruction from samples of the STFT by
running a few iterations.

The expression in (28) can be easily extended for any cyclic subgroup of
⇤�, di↵erent from the horizontal or vertical axis in the phase space description
of the Gabor frame operator (via the Janssen representation). In this way,
one can define alternative preconditioners based on similar principles. The
choice and the order of such preconditioners, which might be more natural
e.g. in the context of a hexagonal lattice, remains the subject of further
investigations. We also see certain connections to the well-known POCS
method (Projection Onto Convex Sets), here with a�ne subspaces arising
from the Wexler-Raz relation, which also includes the question in which
order such a sequence of projections will show optimal performance.

It will be interesting to further investigate the possible benefits of the
double preconditioning method for cases (perhaps multidimensional, non-
separable ones) where direct inversion is not possible, and where it is impor-
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tant to improve the range of su�cient conditions (combined with e↵ective
estimates for the frame bounds) for Gabor frames.

Another direction that may be fruitful in the future involves weighted
versions of this Banach algebra used so far, namely A⇤�

w
, where w is some

submultiplicative (Beurling) weight function on Rd ⇥ bRd, sampled at the lat-
tice points ⇤� (hence it will be a submultiplicative weight on ⇤� as a group
of its own right), with then (finiteness of the following norm providing the
definition)

kT | A⇤�

w
k =

X

��2⇤�

|c�� |w(�) < 1. (96)

With this choice, the space
�
`
1
w
, k · k`1w

�
is again a solid Banach algebra with

respect to convolution (see [58] for concerning Beurling algebras). Thus ar-
guments similar to the unweighted case can be applied.

We do not go into a detailed discussion of the Janssen criterion for this
case, but it is clear that stronger weights will make it more di�cult to satisfy
the corresponding estimate for � < 1. In some cases, one may have to
elaborate on the tradeo↵ between the closeness of the corresponding value
� = �(w) to one (hence a big factor of the form 1/(1 � �) in the estimate
of the inverse) and the stronger decay enforced by the stronger weight, as
a property of the concentration of the inverse operator near the identity
operator.
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APPENDIX 1: Best Approximation by Circulant Matrices

We derive that the best approximation of Sg,⇤ arises by taking the means
of all side diagonals. Any n⇥ n matrix A has the Fourier representation

AF [k, l] =
1

n

nX

r,p=1

A[r, p]e
�2⇡i(kr�lp)

n .

The best approximation of AF can be written (using Matlab notation) as

CF

A
= diag

�
diag

�
AF
��

.

Back on the time side, this writes as

CA[s, t] =
1

n

nX

k,l=1

�
AF [k, l]�k�l

�
e

2⇡i(ks�lt)
n .

Via a change of indices, we find a representation that emphasizes the struc-
ture of the side-diagonals,

CA[s, s� u] =
1

n

nX

k=1

bA[k, k]e 2⇡iku
n

=
1

n

nX

k=1

1

n

nX

r,p=1

A[r, p]e
�2⇡ik(r�p)

n e
2⇡iku

n

=
1

n2

nX

r,q=1

A[r, r � q]
nX

k=1

e
�2⇡ik(q�u)

n

=
1

n

nX

r=1

A[r, r � u].

So, the best approximation of a matrix (in the Frobenius norm sense) by a
circulant matrix is the convolution matrix where one takes the mean of each
side-diagonal. In fact, this is quite natural as a circulant matrix is one where
the side diagonals are constant.

APPENDIX 2

Lemma: Let T↵, ↵ 2 I be a bounded net of linear operators on a Banach
spaces (B, k · kB), such that for any f from a dense subset D one has:

lim
↵!1

T↵(f) = T0(f), in (B, k · kB).
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Then one has uniform convergence of this net over any compact subset M ⇢
B, i.e. given " > 0 there exists ↵0 such that for ↵ ⌫ ↵0 one has

kT↵(f)� T0(f)kB  ", f 2 M.

Proof. The proof is more or less an elementary exercise in functional analysis.
Let us assume that we have sup

↵2I
|kT |kB!B = C0 < 1.

By the compactness of M we find a finite set F = {f1, ..., fK} ⇢ M such
that we can find for any given f 2 M some fk 2 F with kf � fkkB < "/(4C0).

The concept of a convergent net guarantees that for " > 0 there exists
↵0 2 I such that ↵ ⌫ ↵0 implies

kT↵(fk)� T0(fk)kB  "/2, k = 1, ..., K.

Together these estimates yield for a given f 2 M , by choosing k in a
suitable way:

kT↵(f)� T0(f)kB  kT↵(f � fk)kB + kT↵(fk)� T0(fk)kB + kT0(f � fk)kB.
(.1)

Since we have for h 2 D:

kT0(h)kB = lim
↵!1

T↵(h)  C0khkB

the mapping h 7! T0(h) is obviously a linear and extends uniquely to a
bounded linear mapping with |kT0|kB!B  C0. For the last term, we have

kT0(f � fk)kB  C0kf � fkkB,

the same estimate as the first term, so altogether we obtain for any ↵ ⌫ ↵0:

kT↵(f)� T0(f)kB  2C0 kf � fkkB + "/2 < ",

as was claimed.
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[32] H. G. Feichtinger and K. Gröchenig. Gabor frames and time-frequency anal-
ysis of distributions. J. Funct. Anal., 146(2):464–495, 1997.

[33] H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of
Gabor frames. Trans. Amer. Math. Soc., 356(5):2001–2023, 2004.

[34] H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier alge-
bra. J. Approx. Theory, 144(1):103–118, 2007.

[35] H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant op-
erators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer,
editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., pages
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